
Institut für Informatik
Lehrstuhl für Programmierung und Softwaretechnik

LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelor Thesis

Extending UWE with Secure

Navigation Paths

Roman Schwienbacher

Aufgabensteller: Prof. Dr. Martin Wirsing
Betreuer: Marianne Busch
Abgabetermin: 18. September 2012

ii

Ich versichere hiermit eidesstattlich, dass ich die vorliegende Arbeit selbstständig
angefertigt, alle Zitate als solche kenntlich gemacht sowie alle benutzten Quellen
und Hilfsmittel angegeben habe.

München, den 18. September 2012

. .
Roman Schwienbacher

iv

Abstract

The guarantee and implementation of data protection in modern web ap-
plications has challenged software engineers for several years. The first
question that arises is which security aspects must be considered. In a sec-
ond step, one must find a way to model them in a reasonable way in the
design phase and, subsequently, apply them in the implementation phase of
the software development process.

The issue of authentication and access control is one of the most important
ones in the field of data protection. A new approach to ensure navigational
access control is outlined by Secure Navigation Paths (SNPs). Within such
navigation paths, a web application user with a certain role is only permitted
to follow a limited number of paths in the intended order. This should
protect both the user from unintended incorrect application procedures as
well as the system from unauthorized attacks.

The core of this thesis is represented by the development of the, to the extent
of our knowledge, first possibility to model SNPs. We develop this modeling
approach by using the Navigation State Model of the UML-based Web Engi-
neering (UWE) approach. UWE has been developed at the Institute of Pro-
gramming and Software Engineering of the Ludwig-Maximilians-Universität
Munich. It is a powerful method in the modeling of complete web informa-
tion systems. Additional comfort is provided by our new Computer-Aided
Software Engineering (CASE) tool plugin MagicSNP. Basically, this plugin
allows to validate the designed security model and to extract the corre-
sponding navigation rules. Therefore, it facilitates the handover between the
modeling and the implementation progress of the application development.
The last innovation presented in this thesis is our generic monitor mod-
ule. This module is capable to provide Role-Based Access Control (RBAC)
considering SNPs for JSF-based web applications.

In addition, the applicability and, furthermore, the reliability of our overall
approach is demonstrated by a case study called TicketApplication. Origi-
nally, TicketApplication was a simple web application without access control
management. Using our modeling approach, we design the RBAC behav-
ior including the appropriate modeling of SNPs under consideration of the
given use cases. Then we apply our monitor module which provides access
control for our TicketApplication based on the navigation rules extracted by
MagicSNP. As a result, we get a secure and robust web application, which
fulfills the security standards of modern web applications. Therefore, the
approaches of this thesis should be concerned within the context of data
protection in modern web applications.

v

vi

Zusammenfassung

Die Gewährleistung und Implementierung des Datenschutzes in moder-
nen Webanwendungen stellt Softwarearchitekten seit mehreren Jahren vor
große Herausforderungen. Zunächst stellt sich die Frage, welche Sicherheit-
saspekte berücksichtigt werden müssen. In einem zweiten Schritt muss ein
Weg gefunden werden, diese in der Entwurfsphase vernünftig zu model-
lieren, sowie anschließend in der Implementierungsphase des Softwareent-
wicklungsprozesses umzusetzen.

Der Aspekt der Authentifizierung und Zugriffskontrolle ist einer der wichtig-
sten im Bereich des Datenschutzes. Sichere Navigationspfade stellen einen
neuen Ansatz zur Gewährleistung von navigationsbasierter Zugriffskontrolle
dar. Innerhalb solcher sicheren Navigationspfade ist es einem Benutzer mit
einer gewissen Rolle nur erlaubt eine begrenzte Anzahl von Pfaden innerhalb
der Webanwendung in der vorgesehenen Reihenfolge zu verfolgen. Diese
Methode soll sowohl den Benutzer vor versehentlich falschen Applikations-
abläufen als auch das System vor Angriffen schützen.

Der Kern dieser Arbeit besteht in der Entwicklung des, laut unseren Kennt-
nissen, ersten Ansatzes zur Modellierung von sicheren Navigationspfaden.
Wir entwickeln diesen neuen Modellierungsansatz unter Verwendung des
Navigation State Model vom UML-based Web Engineering (UWE) Ansatz.
UWE wurde am Lehrstuhl für Programmierung und Softwaretechnik der
Ludwig-Maximilians-Universität München entwickelt und ist ein mächtiges
Werkzeug für Softwarearchitekten im Bereich der Modellierung von kom-
pletten Webanwendungen. Zusätzlicher Komfort wird von unserem neuen
Computer-Aided Software Engineering (CASE) Tool Plugin MagicSNP ge-
boten. Dieses ermöglicht die Validierung der erstellten Sicherheitsmodelle
und die Extraktion der entsprechenden Navigationsregeln. Dadurch wird
der Übergang zwischen der Modellierung und der Implementierung der An-
wendung erleichtert. Die letzte Innovation der vorliegenden Arbeit stellt
ein generisches Monitor Modul dar. Dieses ist fähig, Rollen-basierte Zu-
griffskontrolle (RBAC) unter Berücksichtigung sicherer Navigationspfade
für JSF-basierte Webanwendungen zu gewährleisten.

Zusätzlich wird die Anwendbarkeit und vielmehr die Funktionsfähigkeit un-
seres Ansatzes anhand einer Fallstudie namens TicketApplication konkret
demonstriert. TicketApplication war ursprünglich eine einfache Webanwen-
dung, welche keine Zugriffskontrolle vorsah. Basierend auf den gegebenen
Anwendungsfällen und unter Verwendung unseres Modellierungsansatzes
modellieren wir das RBAC Verhalten inklusive sicherer Navigationspfade.
Danach wird unser Monitormodul für die Webanwendung konfiguriert, wel-

vii

viii

ches basierend auf den von MagicSNP extrahierten Navigationsregeln Zu-
griffskontrolle für die Anwendung gewährleistet. Als Ergebnis erhalten
wir eine sichere und robuste Webanwendung, welche die Sicherheitsstan-
dards von modernen Webanwendungen erfüllt. Somit sollten die Herange-
hensweisen dieser Arbeit im Kontext von Datenschutz im modernen We-
banwendungen mit berücksichtigt werden.

Acknowledgements

I would like to thank Prof. Dr. Martin Wirsing for giving me the opportunity to
write this bachelor thesis. I would especially like to thank the supervisor of my thesis,
Marianne Busch. Her professional and constructive feedback helped me to improve the
quality of my thesis. Furthermore, I want to thank Martin Ochoa from Siemens AG
Corporate Research and Technologies for the kind support. Finally, I would like to
thank my reviewers and friends Birgit Haller and Klaus Rzehaczek.

ix

x

Contents

1 Introduction 1

2 Related Work and Technical Possibilities 5

2.1 Security Modeling . 5

2.1.1 UWE . 5

2.1.2 SecureUML . 6

2.1.3 UMLSec . 6

2.1.4 ActionGUI . 7

2.2 Security Frameworks . 7

2.2.1 Apache Shiro Web-Features . 7

2.2.2 Spring Security . 8

2.2.3 jGuard Web . 8

2.3 Summary . 8

3 Modeling Secure Navigation Paths with UWE 9

3.1 Navigation State Model . 9

3.2 Our Modeling Approach . 9

3.2.1 Constraints . 10

3.2.2 Recommendations . 10

3.3 Representation of Secure Navigation Paths in Plain UML 11

3.4 Supporting CASE Tool Plugin MagicSNP 12

3.4.1 Usage of MagicSNP . 12

3.4.2 Implementation of MagicSNP . 13

3.5 Summary . 15

4 Monitor Module 17

4.1 Rule Domains . 17

4.1.1 NavigationFile . 18

4.1.2 NavigationNode . 18

4.1.3 Rule . 18

4.2 Module Components . 18

4.2.1 Security Provider . 19

4.2.2 App Monitor . 20

4.3 Preparing a Web Application to be Monitored 22

4.3.1 Configuration . 22

4.3.2 Recommended Behavior . 23

4.4 Used technology . 23

4.5 Summary . 24

xi

xii CONTENTS

5 Case Study TicketApplication 25
5.1 Use Cases . 25
5.2 Basic Rights Model . 26
5.3 Navigation State Model . 27
5.4 Extracted Navigation File by MagicSNP 28
5.5 Application of the Monitor Module . 28
5.6 Used Frameworks and Technologies . 29
5.7 Summary . 29

6 Conclusion and Outlook 31

List of Figures 33

Acronyms 35

Content of the CD 37

Bibliography 39

Chapter 1

Introduction

In the era of modern information technologies, where sensitive personal data is stored
and managed over the Internet on databases or remote servers, software engineers are
faced with new tasks in the field of security and user guidance.

Since broadband Internet is available for almost anyone, anytime and anywhere, the
demand and the availability of web applications has dramatically increased. The success
of web applications is fundamentally based, among other factors like high-fidelity and
user-friendliness, upon the guarantee of data protection. It creates confidence to the
web user and enables protected data transfers of sensitive data over a basically unsafe
medium like the Internet. Therefore, new security frameworks have been designed and
developed to better protect web applications from unauthorized access. In general,
security frameworks already apply the four pillars of security and data protection for
web applications:

i. Authentication (the process of proving the identity of an user to gain access to a
protected resource)

ii. Authorization / Access control (the process of authorization determines what a
subject (e.g., an user or a program) is allowed to access, especially what it can do
with specific objects (e.g., files) [And08])

iii. Encryption (the conversion of data into a form that cannot be understood by
unauthorized subjects)

iv. Session management (the process of keeping user-specific application data during
he is authenticated to the system)

Examples of such security frameworks include Spring Security1 and Apache Shiro2.
Both were designed to provide a high standard of security as comfortable as possible
for already implemented web applications. Therefore, they gained popularity and they
are used and recommended by a large community of application providers.

However, there is one important aspect of security in the area of data protection
which has not been considered concretely yet: A kind of navigational access control
which guarantees that every web user with a certain role has only a limited num-
ber of navigation paths inside the application context. We call them Secure Nav-
igation Paths (SNPs). Suppose a web application procedure managed to open an
online-banking-account, which consists of about ten steps. What happens when a user,

1Spring Security. http://static.springsource.org/spring-security/site/, last visited 2012-07-08
2Apache Shiro. http://shiro.apache.org/, last visited 2012-07-07

1

http://static.springsource.org/spring-security/site/
http://shiro.apache.org/

2 CHAPTER 1. INTRODUCTION

whether intentionally or not, jumps from step two, “indicating the personal data”, to
the last step, “confirmation”, simply by calling the corresponding URL, and confirms
the transaction? This can not only lead to fatal inconsistencies on the application state,
but may also cause a worst case scenario like losing money or damaging the image of
the application provider.

Regarding the addressed issue, the goal of this thesis is to fill the gap of miss-
ing possibilities to model and control SNPs to enhance data protection within web
applications. We start by developing a first approach on how to design SNPs. In
addition, we implement an innovative and generic monitor module which is capable
to provide Role-Based Access Control (RBAC) considering SNPs for JSF-based web
applications. Thus safety-critical jumps through the different context views of the ap-
plication, called navigation nodes, should be avoided. Finally, we provide a new plugin
for the Computer-Aided Software Engineering (CASE) tool MagicDraw3. Basically,
this plugin validates the designed security models which contain SNP semantics and it
is able to extract the corresponding navigation rules.

In order to develop our approach on how to design access control considering SNPs
we decided to use the UML-based Web Engineering (UWE)4 approach. UWE has been
developed at the Institute of Programming and Software Engineering of the Ludwig-
Maximilians-Universität Munich and is a powerful method in the modeling of complete
web information systems. In general, UML is powerful enough to cover the requirements
that arise when modeling web applications [KK11]. In addition, UWE extends the UML
profile by a large set of useful security and web features. Basically, we use UWE’s
Navigation State Model, originally an UML state machine, to be able to design RBAC
for web applications considering SNPs using states and transitions.

Our new Computer-Aided Software Engineering (CASE) tool plugin for Magic-
Draw is a tool to validate the designed security model and moreover to extract the
corresponding access-control-semantics. By iterating recursively through all hierarchi-
cal states and by analyzing the incoming transitions, state names and tags, this tool
fetches and converts the relevant information into a semi-structured data format like
JSON. Consequently, this plugin secures, accelerates and reduces the complexity of the
handover between the modeling and the implementation progress of the web application
development.

In order to be capable to provide RBAC with SNPs for web applications consid-
ering the modeled access-control-semantics we develop a new generic monitor module
approach. This module is responsible to decide whether or not an user is allowed to get
access to a protected resource. The decision making is based on the web user’s session
information (e.g., previously visited location, assigned user roles etc.) and the extracted
access-control rule file, generated by our new MagicDraw plugin. In order to ensure
robustness, this monitor module also handles any kind of access-constraint violation:
The web user gets redirected to a corresponding error-page including an appropriate
error-message with possibility to go back to its previously visited navigation-context.

The whole approach is reliable, flexible, straightforward for software engineers as
well as for programmers and increase the security and robustness for web applications.
Finally, these quality factors are proven by a case-study where we develop a sample
web application: By using our new modeling approach, we design RBAC considering
SNPs in the design-phase. Then we use our new MagicDraw plugin to validate our
security-model and to extract the corresponding navigation-rule file. Finally, we apply

3MagicDraw. http://www.magicdraw.com/, last visited 2012-07-10
4UWE. http://uwe.pst.ifi.lmu.de, last visited 2012-07-29

http://www.magicdraw.com/
http://uwe.pst.ifi.lmu.de

3

our generic monitor module and inject the navigation-rule file in the implementation-
phase. As a result we get a secure and robust web application which excels the security
standard of modern web applications by using and applying our approaches developed
in this thesis.

The remainder is structured as follows: In chapter 2 we analyze the concepts of
UML-based security modeling approaches and we introduce the fundamentals of how
existing and established security frameworks provide security for web applications.
Chapter 3 presents our new modeling approach inclusive our new CASE tool plu-
gin for MagicDraw. In chapter 4 we give an insight into the implementation of our
generic monitor module. Chapter 5, shows our case study TicketApplication. Finally,
Chapter 6 summarizes the results and provides an outlook on future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work and Technical
Possibilities

For a solid understanding of the design part and the security-implementation shown
in this thesis, it is important to take a deeper look on some already existing and well
proved security modeling approaches and frameworks. First, we provide an outlook
on what informational security aspects already can be modeled. Second, we figure
out what kind of data is needed for the configuration of security frameworks and how
these frameworks finally provide security for web applications. Our new modeling and
monitoring approaches introduced in this thesis were build based on these fundamentals.

2.1 Security Modeling

The Unified Modeling Language (UML) is well-known in software engineering fields
and proven as the de-facto standard for designing software systems. Therefore, our
security modeling approach relies on an UML-based environment. The following section
provides a short overview of already existing UML-based security modeling approaches.

2.1.1 UWE

UWE has been developed at the Institute of Programming and Software Engineering of
the Ludwig-Maximilians-Universität Munich to provide a new UML based approach on
how to design complete web applications. Basically, it defines the following five views
for the separation of concerns:

i. Content : Specifies the used data structure of the web application, represented as
UML class diagrams.

ii. Role model / Basic Rights Model : UWE’s Role Model allows one to define charac-
teristics of the user-groups with the purpose of authorization and access control.
Based on this, the Basic Rights Model offers a compact notation for domain spe-
cific RBAC declarations. It shows all available user roles in combination with the
managed data domains of the future web application. The model itself is an UML
class-diagram whereas the domains are represented as class definitions and the user
roles are specified by class instances of the class Role. The primary goal of this
model is to declare which user role is allowed to access which attribute or per-
form which action inside a domain. Therefor, the user roles are connected to the
corresponding domains/methods/attributes with stereotyped dependencies.

5

6 CHAPTER 2. RELATED WORK AND TECHNICAL POSSIBILITIES

iii. Navigation: Specifies the navigational view of the web application including role-
based navigational access control (e.g., the parts of webpages that are accessible
by a certain user role). This model is designed as UML state machines and called
Navigation State Model. The navigational view consists of possible hierarchical
states, the navigation nodes of the web application. More detailed information
about navigation state models is given in chapter 3.

iv. Presentation: Specifies the application views and their nested forms and widgets,
including content validation checks and behavior specifications of interactive ele-
ments (e.g., auto-completion for input text fields). This concern is represented as
a rough presentation model.

v. Process: Specifies the process structure as class diagrams. The workflow of the
processes can be modeled with UML activity diagrams.

Considering these points, this method represents a powerful and dynamic modeling
environment to design a complete web application ready to implement. Therefore, our
security design approach is an extension of UWE which affects the Navigation part.

2.1.2 SecureUML

SecureUML [LBD02] provides an UML-based modeling language that allows one to
model RBAC for actions on protected resources. Additional authorization constraints
which depend on dynamic properties of the system state can be defined with the Object
Constraint Language (OCL). Thereby, it is possible to define dynamic security con-
straints like “method getCustomers() is only available to role employee during week-
days”.

Essentially, SecureUML is a language for specifying access control policies by mod-
eling hierarchical roles, permissions, actions, resources and authorization constraints.
However, in contrast to UWE’s Basic Rights Model, SecureUML cannot express excep-
tions and requests to specify all permissions separately in association classes.

2.1.3 UMLSec

UMLSec [Jür04] provides an UML extension that enables the application developer to
design model-driven:

i. RBAC on resources and actions

ii. Guarded access on system components like Java class-instances

iii. Authenticity freshness, secrecy and integrity for data streams

iv. Secure information flows to design possible information flows by state machines

However, compared to UWE models, UMLSec models are very detailed and there-
fore very complex. Another disadvantage is faced by the fact that UMLSec only sup-
ports UML 1.4.

2.2. SECURITY FRAMEWORKS 7

2.1.4 ActionGUI

ActionGUI [BCE11] is a language for modeling Graphical User Interfaces (GUIs) for
data-centric applications with access control policies. It allows one to design widgets,
which are the basic elements of a GUI (e.g., textfields, buttons, comboboxes, checkboxes
etc.) in combination with their possible events (e.g., clicking on a widget, entering a
widget) which may trigger a set of associated actions. It is possible to define specific
conditions for every available event or action. These conditions may depend on the
information kept in the widgets itself or stored in the database.

In particular, an ActionGUI model consists of three models:

i. Data model, specifies the data structure of the application

ii. Security model, specifies the access control policies by roles, permissions and con-
straints

iii. GUI model, specifies the GUI of the application

2.2 Security Frameworks

The following selection contains a set of web security frameworks which allow to realize
and implement the security aspects modeled by the presented notations of the previous
section. It should be noted that this is currently not yet an automatic task. The
developers still have to interpret and implement the designed semantics accurately and
manually which is a time-consuming and error-prone task.

2.2.1 Apache Shiro Web-Features

Apache Shiro1 is a security-framework inter alia for Java-web applications that com-
plements them in the following points:

i. Authentication (logins are supported across one or more dynamic data sources
like Java Database Connectivity (JDBC) or Lightweight Directory Access Protocol
(LDAP))

ii. Authorization / Access control (based on roles or fine-grained permissions)

iii. Encryption (provided by a large set of hashing and cipher features)

iv. Session management (managed within an individual session storage like an enter-
prise cache, a relational database or proprietary data store)

In a nutshell, the developer only has to configure so called Realms persistently,
whereby Shiro can decide which user has with which role on which sites with which
rights access or not. Therefore, already existing web applications can be secured with
Apache Shiro without much effort.

1Apache Shiro Web-Features. http://shiro.apache.org/web-features.html, last visited 2012-07-07

http://shiro.apache.org/web-features.html

8 CHAPTER 2. RELATED WORK AND TECHNICAL POSSIBILITIES

2.2.2 Spring Security

Spring Security2 (former ACEGI) is a security-framework for Java-web applications,
which provides authentication and access control. Users including their roles and access
patterns can be declared by static or dynamic database driven user-services. They
provide the basis for decision making of which user role has access to which sites or
elements. If there is a user without authentication requesting a resource, he will be
redirected to the login-context automatically. After a successful login and if the user is
authorized to access the requested page, he will be redirected to the initially requested
page.

The whole framework can be included and configured for already existing web ap-
plications without much effort.

2.2.3 jGuard Web

jGuard3 is a Java library especially designed to equip Java-web applications with au-
thentication and authorization. The following domains are available to configure access
control features:

i. jGuardFilter (login, violation and logout page)

ii. jGuardAuthentication and jGuardAuthorization (scope of the authentication, en-
cryption)

iii. jGuardUserPrincipals (user and role information)

iv. jGuardPrincipalsPermissions (which user and role has access on which page)

2.3 Summary

In order to model security, especially navigational access control, information like the
user role in combination with the corresponding access-information and navigational-
behavior like “what happens if not authenticated?” or “what happens if not authorized?”
are of crucial importance.

It should be noted that adding such features to already implemented web appli-
cations is an error-prone task. Security aspects are part of the application behavior
and should be considered right from the beginning of the application development pro-
cess. Otherwise, undesirable behavior or serious security leaks may occur as a result
of missing meticulous testing of the security behavior in combination with the residual
application behavior.

Therefore, the modeling approach in this thesis enables web engineers to model
security issues in an earlier phase of the application development process as the imple-
mentation phase (e.g., the design phase).

2Spring Security. http://static.springsource.org/spring-security/site/, last visited 2012-07-08
3jGuard Web. http://jguard.xwiki.com/xwiki/bin/view/Main/WebHome, last visited 2012-07-08

http://static.springsource.org/spring-security/site/
http://jguard.xwiki.com/xwiki/bin/view/Main/WebHome

Chapter 3

Modeling Secure Navigation
Paths with UWE

In this chapter, we take a look on how navigational access control already can be
modeled in UWE using its Navigation State Model. Afterwards, we introduce our new
modeling approach that allows one to model access control by taking Secure Navigation
Paths (SNPs) into account. Finally, we present our new plugin MagicSNP for the
Computer-Aided Software Engineering (CASE) tool MagicDraw1: By performing one
simple mouse click, this plugin is able to validate the selected model and moreover
to generate a corresponding rule-file containing the data records, required to provide
access control with SNPs.

3.1 Navigation State Model

A navigation state model describes the navigation structure of a Web-Information-
System (WIS) and its behavior according to the different states. In UWE, navigation
can be represented by a UML state machine: States, possibly hierarchical, represent
navigational nodes, transitions the navigational links between the nodes. [BKK11]

Every state can hold a tag named roles that defines which role instances are allowed
to enter the corresponding state. Another optional tag called unauthorizedAccess spec-
ifies which state a user will be redirected to if his role is not authorized to navigate to
the requested navigational node. The last important boolean tag of a state is named
isHome. It defines the login-context where the user will be redirected to in case he is
not authenticated.

In order to design the Navigation State Models of this thesis we use the existing
MagicDraw plugin MagicUWE [BK09]. MagicUWE is a CASE tool for designing and
generating UWE models characterized by its usability.

3.2 Our Modeling Approach

UWE’s Navigation State Model already covers all access control based constraints for
web applications which can be monitored by the presently existing security frameworks
shown in chapter 2. In order to design SNPs we simply use the transitions between
the states. They already provide all the required means for specifying SNPs. Applying
this to the Navigation State Model illustrated in Figure 3.1 it cannot be possible that

1MagicDraw. http://www.magicdraw.com/, last visited 2012-07-10

9

http://www.magicdraw.com/

10 CHAPTER 3. MODELING SECURE NAVIGATION PATHS WITH UWE

Figure 3.1: Simple Navigation State Model

a user stays on the navigation state view2 without having been on the navigation state
view1 right before. This constraint is indicated by the outgoing transition pointing
from view1 to view2. Therefore, the redirect to some violation state (defined in an
unouthorizedAccess tag) occurs not only if the role is not authorized to jump to it
corresponding to the RBAC. It also occurs in case the user was not on a state that has
no outgoing transition to the requested state right before.

3.2.1 Constraints

Every Navigation State Model has to contain one parent state which represents the
whole web application. On this level the tag unauthorizedAccess is mandatory. It
passes the default violation information to its substates in case they have no such tag
defined.

In order to provide the information which navigation node represents the login-
context, the whole model must exhibit exactly one navigation state declared as home
state by the tag isHome.

3.2.2 Recommendations

Nesting increases the readability of the Navigation State Model and avoids multiple tag
declarations and transitions. Therefore, nesting is a recommended pattern to structure
and group navigational nodes to. Theoretically, it is allowed to nest the navigation
states until any level. However, the grade of this level should not be higher than five
or six to keep the readability on an acceptable level. All the tags, declared in a parent
state, are passed to the corresponding child states, but can also be overwritten by
redefining them on a lower level. It should be noted that the isHome tag will be passed
to the innermost initial state only as well as this state will inherit all the incoming
transitions of its ancestor states. Therefore, it can be said that only states without
child states are representing real navigation nodes inside the future application. In
order to differentiate them from parent states, we decided to use the convention of
labeling their name with the first letter in lower case.

3.3. REPRESENTATION OF SECURE NAVIGATION PATHS IN PLAIN UML 11

Generally, it is strongly recommended that violation navigation states, declared
in any unauthorizedAccess tag, should not exhibit incoming transitions to avoid non
terminating violation redirects.

The tag transmissionType=“cif” is optional, it sets the overall type of data trans-
mission during the session to cif, providing for confidentiality, integrity, and freshness:
The implementation should prevent eavesdropping, replaying, or altering of transmitted
data. [BKK11]

The stereotype session just declares that several session information is kept on the
browsing user entering this navigation node.

Last but not least, the call event logout() leads to the termination of the Navigation
State Model. This event does not stand for the end of the whole application. Moreover,
it represents the end of one single user-session context where every user-specific infor-
mation corresponding to the web application will be removed. In other words logout()
just leads to the logout of the corresponding user.

3.3 Representation of Secure Navigation Paths in Plain
UML

The precise meaning of UWE’s Navigation State Model including the described exten-
sions for SNPs can be illustrated by a transformation into plain UML.

Figure 3.2: A transformation into Plain UML

As depicted in Figure 3.2, there is one new state listenForRequests which handles
every request on the web application. Every real navigation state is reachable from this
state, controlled by guard conditions. These are generated by translating the session
tags roles, unauthorizedAccess and the implied SNP information out of the transitions.

12 CHAPTER 3. MODELING SECURE NAVIGATION PATHS WITH UWE

In case the user is logged in, his role and last visited navigation node are stored in the
session attributes role and preVisited identified by the sessionId of the request. The
requested navigation node comes as parameter location through the request context.
The guards are checking exactly these attributes. However, the default unauthorized
access state gets the else guard-condition.

3.4 Supporting CASE Tool Plugin MagicSNP

Once the Navigation State Model is designed and valid according to the requirements
mentioned in the section 3.2.1, it takes great effort to apply the whole system of rules
to an independent security provider of a web application. Rather than implementing
rule by rule it would be a great benefit to have the possibility to generate the whole
system of rules directly right out of the Navigation State Model. However, that is
exactly what the MagicDraw plugin MagicSNP does. The main goal of this plugin
is to provide a convenient tool for securing, accelerating and reducing the complexity
of the handover between the modeling and the implementation progress of the whole
application development. In addition, the developer gets a robust tool to validate
Navigation State Models regarding to the modeling constraints and recommendations
defined in this chapter.

3.4.1 Usage of MagicSNP

Figure 3.3 depicts how to call the plugin MagicSNP :

Figure 3.3: Using the MagicDraw plugin MagicSNP

Just perform a right click on the Navigation State Model in the containment-tree to
open the context menu and select MagicSNP/Generate-Monitor-File. Right after that
a pop-up window opens which contains all the semantic information of the selected

3.4. SUPPORTING CASE TOOL PLUGIN MAGICSNP 13

Navigation State Model context. In case the designed model is not valid, the pop-up
simply contains the corresponding error message. Therefore, this plugin can also be
used or seen as a quick validation tool.

The content (except the error message) is semi-structured as JavaScript Object
Notation (JSON)2 and conforms to the Java properties3 format. Assuming the security
backend is implemented in Java and reads the security configuration parameters out of a
Java properties file: This format ensures a quick transfer of the generated data between
the modeling and the implementation context by performing a simple copy-paste.

3.4.2 Implementation of MagicSNP

We developed MagicSNP using MagicDraw’s open API4. In order to get a better under-
standing of how the plugin collects and finally builds the data from the selected model,
this subsection will describe its entire process sequence. Figure 3.4 illustrates the ac-
tivity sequence of the rule extracting job on an abstract level. It starts by checking if
the state machine is valid corresponding to the following two constraints:

i. There must be exactly one parent application state representing the whole appli-
cation which exhibits the default unauthorizedAccess definition

ii. There must be exactly one navigation state which is declared as home state

Figure 3.4: Custom MagicDraw plugin MagicSNP: activity diagram

2JSON. http://www.json.org/, last visited 2012-07-03
3Java properties. http://docs.oracle.com/javase/6/util/Properties.html, last visited 2012-07-03
4Open API. http://www.nomagic.com/files/manuals/MagicDraw%20OpenAPI%20UserGuide.pdf, last
visited 2012-08-02

http://www.json.org/
http://docs.oracle.com/javase/6/util/Properties.html
http://www.nomagic.com/files/manuals/MagicDraw%20OpenAPI%20UserGuide.pdf

14 CHAPTER 3. MODELING SECURE NAVIGATION PATHS WITH UWE

If one of these constraints fails, the job terminates immediately and returns just an
appropriate error message.

Otherwise, the job runs in hierarchical order recursively through all states until
the innermost level, the level of the navigation states, is achieved: For each one of
these, the roles and the unauthorizedAccess information is collected considering the
inheritance rules of UML state machines. Finally, every navigation state of the future
application is represented by one location entry. All the incoming navigation state
names are recorded and written as pre visited into the rules attribute of the current
location entry to represent one possible step of an SNP. In case of an incoming state
is a parent state, the job considers all the child states on the innermost level instead
of the state itself. If a navigation state is a child state and at the same time the initial
state inside his level, all assigned incoming state names of his parent were also assigned.

For each role defined for a navigation state, the rule attribute inside a location record
will be duplicated containing the corresponding role information, with the exception of
the isHome state. The login context should be available for every surfer regardless of
its session context. Therefore, an empty rule list is added to the entry for this state.

Finally, a time stamp is set to get a history inside the navigation rule files. Af-
terwards, the job puts all the information together and generates a JSON structured
navigation rule file. This can be taken as input for a security framework which provides
RBAC including SNPs for the modeled web application. Figure 3.5 depicts such a rule
file based on the Navigation State Model illustrated by Figure 3.1.

1 nav igat i on . f i l e ={ \
2 ” comment” : ”Build t ime : 05 . 06 .2012 09 : 2 8 : 5 6 ” ,\
3 ” app l i c a t i o n ” : ”Example” ,\
4 ” l o c a t i o n s ” : [\
5 {” l o c a t i o n ” : ” l o g i n ” , ” v i o l a t i o n ” : ” e r r o r ” , ”home” : t rue ,\
6 ” r u l e s ” : [{ ” r o l e ” : ”∗” , ” p r e v i s i t e d ” : [] }] } , \
7 {” l o c a t i o n ” : ”view1” , ” v i o l a t i o n ” : ” e r r o r ” , ”home” : f a l s e ,\
8 ” r u l e s ” : [{ ” r o l e ” : ” r e g i s t e r e dUs e r s ” , ” p r e v i s i t e d ” : [” l o g i n ” , ”view2”] }] } , \
9 {” l o c a t i o n ” : ”view2” , ” v i o l a t i o n ” : ” e r r o r ” , ”home” : f a l s e ,\

10 ” r u l e s ” : [{ ” r o l e ” : ” r e g i s t e r e dUs e r s ” , ” p r e v i s i t e d ” : [”view1”] }] } , \
11 {” l o c a t i o n ” : ” e r r o r ” , ” v i o l a t i o n ” : ” e r r o r ” , ”home” : f a l s e ,\
12 ” r u l e s ” : [{ ” r o l e ” : ”∗” , ” p r e v i s i t e d ” : [] }] }] , \
13 ” d e f a u l t v i o l a t i o n ” : ” e r r o r ”}

Figure 3.5: Extracted JSON structured navigation rule file

The content corresponds to the Java properties format. There is only one property
named navigation.file which holds the JSON structured navigation-rule data. The
first attribute on the outermost level comment holds the build time meta-information.
The attribute application contains the application name and default violation contains
the default violation navigation node. The property locations contains an array of all
possible navigation nodes of the future application. Every array item consists of a set
of attributes:

i. location (stores the name of the navigation node)

ii. violation (specifies which navigation node is entered when an access rule is violated)

iii. home (identifies the login context node)

iv. rules (holds an array for every role which is permitted to access the current node)

3.5. SUMMARY 15

Each item of the rules array consists of an attribute named role which stands for
the user role and an array which holds all possible preceding navigation-nodes named
pre visited. The user with the corresponding role must have visited exactly one of these
nodes right before to have a right to access the current location.

The value of the role attribute can hold the Kleene star which means that this rule
applies for every request without considering the user role. In case the pre visited array
is empty, it does not matter on which navigation node the user with the corresponding
role has been right before. Usually, the location entry which is tagged as home location
has just one single rules item ({"role":"*","pre visited":[]}) which grants that
every user has access to it.

3.5 Summary

This chapter presented our new design pattern to model SNPs in UWE. In addition,
our new MagicDraw plugin MagicSNP and its ability to generate a navigation rule file
out of the designed Navigation State Model with one simple mouse click was introduced.

The following chapter shows our monitor module which is able to read and interpret
this file dynamically. Basically, it represents the listenForRequests state, as depicted
in figure 3.2, by monitoring the navigational access control for a web application cor-
responding to given navigation rules.

16 CHAPTER 3. MODELING SECURE NAVIGATION PATHS WITH UWE

Chapter 4

Monitor Module

This chapter shows the conception and implementation of our new autonomous and
generic monitoring module. It is capable to provide role-based navigational access
control for JSF1-based web applications considering Secure Navigation Paths (SNPs).
First, we present the class structure of the domains this module uses to calculate
whether or not a specific request is allowed. Second, we introduce the components
and sub-components of which this module consists. Additionally, we analyze which
responsibilities they have and how they collaborate with each other. Third, we provide
an instruction on how to prepare a web application to be monitored by this approach.
Finally, we list the third-party frameworks we used to implement this module.

4.1 Rule Domains

The cleanest way to work with structured data inside a Java application is given by
using object-oriented domain classes. Therefore, the module needs a specific object-
oriented data structure which holds the information given by the JSON structured
navigation rule file, generated in the design phase of the development process.

Figure 4.1: Rule Domains: Class diagram

Figure 4.1 depicts the structural dependencies of the rule domains NavigationFile,
NavigationNode and Rule: One NavigationFile instance can hold a set of as many
NavigationNode instances as needed (stored in the private locations attribute). Every
object of the class NavigationNode can hold any number of Rule instances (stored in
the private rules attribute).

1JSF. http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html, last vis-
ited 2012-07-18

17

http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html

18 CHAPTER 4. MONITOR MODULE

4.1.1 NavigationFile

An instance of the class NavigationFile represents the whole navigation rule file. It
contains the application name, build information, default violation and a set of locations
represented by objects of the class NavigationNode.

4.1.2 NavigationNode

Every instance of the class NavigationNode matches to a view element of the web
application. This class consists of the node name, the corresponding violation, the
boolean attribute, whether it is the login node or not, and a set of Rule domains.

4.1.3 Rule

Every Rule object holds security based access information for one specific user role.
It defines which possible navigation nodes could have been visited right before to be
authorized to access the corresponding navigation node considering defined SNPs.

4.2 Module Components

As autonomous and generic access control framework, our monitor module acts as inde-
pendent interface between web user and the web application. The first skill is to monitor
every single request and to manage the communication between the corresponding web
user and the web application. The second skill is to vote whether or not a user is
allowed to access a requested protected location. In order to be capable to handle such
request-voting simultaneously, it is necessary to have a kind of flow-control inside the
framework. Therefore, our monitor module consists of two major components: Firstly,
the Security Provider which processes whether or not a request on a specific resource
is granted. Secondly, the App Monitor which handles every single request on the web
application and schedules the voting requests to the Security Provider to avoid request
overflows.

Figure 4.2: Module Components: Request life cycle

Figure 4.2 depicts the primary scenario of one life cycle for one user request which
has to pass the access control of our monitor module: The web user requests the

4.2. MODULE COMPONENTS 19

protected resource x. The App Monitor reads the request parameters and asks the
Security Provider whether or not the access is allowed. In this case the Security Provider
allows the access corresponding to the rule file. Therefore, the App Monitor passes
user-request to the web application and the application-response to the web user.

Further information about these major components is given in the following two
subsections.

4.2.1 Security Provider

The class SecurityProvider is capable to decide through the AccessVoter whether or
not a user is allowed to access a requested location with his pre-visited location and his
roles. Additionally, this class can provide the login node or the corresponding violation
node calculated by the ViolationLocationProvider in case of an access violation.

This service must be available during the whole runtime to ensure permanent navi-
gational access control to avoid security leaks. Therefore, the class SecurityProvider
loads the JSON structured navigation rule file content generated by the MagicDraw
plugin introduced in chapter 3 just as the application server of the web application
launches. Finally, the content is parsed to the static NavigationFile instance nav-
igationFile of this class which corresponds to the object-oriented data structure of
section 4.1.

1 // c a l l e d @ spr ing i n i t i a l i z a t i o n / se rve r s t a r t−up
2 public void se tAppl i cat ionContext (Appl icat ionContext ac) throws BeansException {
3

4 l og . debug (” try to parse ” + S FILE) ;
5

6 try {
7

8 // load p rop e r t i e s resource
9 Prope r t i e s p r op e r t i e s = new Prope r t i e s () ;

10 p r op e r t i e s . load (Secur i tyProv ide r . class . getResourceAsStream (”/” + S FILE)) ;
11

12 i f (p r op e r t i e s . containsKey (” nav igat i on . f i l e ”)) {
13

14 // check i f va lue i s JSON va l i d
15 i f (JSONUtils .mayBeJSON(p r op e r t i e s . getProperty (NAVPROPERTY))) {
16

17 // read JSON content out o f proper ty
18 JSONObject j sonHolder =
19 JSONObject . fromObject (p r op e r t i e s . getProperty (NAVPROPERTY)) ;
20

21 // parse to Nav iga t ionFi l e ins tance
22 nav i g a t i onF i l e =
23 (Nav iga t i onF i l e) JSONObject . toBean (jsonHolder , Nav iga t i onF i l e . class) ;
24

25 l og . debug (S FILE + ” parsed s u c c e s s f u l l y ”) ;
26 l og . debug (”Appl i ca t ion name : ” + nav i g a t i onF i l e . g e tApp l i ca t i on ()) ;
27 l og . debug (” F i l e gene ra t i on date : ” + nav i g a t i onF i l e . get comment ()) ;
28

29 } else {
30 l og . e r r o r (” Secu r i ty f i l e ” + S FILE + ” conta in s no va l i d JSON”) ;
31 }
32 } else {
33 l og . e r r o r (” Secu r i ty property ” + NAVPROPERTY + ” not found”) ;
34 }
35 } catch (Exception e) {
36 l og . e r r o r (”Error @parsing ” + S FILE , e) ;
37 }
38 }

Listing 4.1: Method setApplicationContext: called at server start-up, parses the
navigation rule file

20 CHAPTER 4. MONITOR MODULE

The method setApplicationContext, depicted in Listing 4.1, is responsible for
the load and parse topic we described above. This method consists of several logging
commands and instructions to load the rule file. However, the major task is the act
of parsing and initializing the central NavigationFile instance navigationFile at
line 22 and 23. As result of the structural equality between the JSON structured rule
content and our rule domains this task is covered by one single line of code using the
static method toBean of the class JSONObject. This method is part of the Maven
JSON-lib2 API we use for our monitor module.

There is a disadvantage in loading the navigation rule file when the server launches:
Every modification of the access control rules causes a relaunch of the application
server. An alternative to this approach would have been to make the navigation rule
file changable during the runtime without restarting the application server. That would
increase the up-time of the web application. However, this approach would imply a
negative impact on the performance of the web application, because the navigation
rule file would be needed to be parsed before every access request. Therefore, we
decided to do this job just once at the server startup.

The AccessVoter of this module is the logical interface between the design-phase
with its generated rule file and our web application monitor module approach presented
in this chapter. Basically, for the voting about some arbitrary user request it requires
the following input parameters: Firstly, the assigned user roles. Secondly, the last
visited navigation node inside the application context and finally the requested node.

When called, the component iterates through the NavigationNode instances of
the NavigationFile object until the instance corresponding to the requested loca-
tion is matched. Right after that the system searches the right Rule instance of the
NavigationNode for the role information of the user (the Kleene star matches to all
possible rules incidentally). If found, the given last visited navigation node of the user
is syndicated by the possible navigation nodes regarding to the well-defined SNP. If at
least one node can be matched, the returned voting result will be true. In the special
case that the requested location is equal to the last pre-visited location, the voting
result will also be true (e.g., a submit occurs on a certain page and an input value
inside a form is not valid). In any other cases the voter votes false and the access to
the requested resource would not be allowed.

In case the AccessVoter does not allow the access to a certain node, the system
requires a violation node for redirecting to take the user into account, an access control
violation occurred.

The ViolationLocationProvider of the SecurityProvider returns the violation
entry of the given requested location configured in the corresponding NavigationNode

instance. If the requested location cannot be matched to any instance or no violation
node is defined for the corresponding navigation node, the application wide default
violation, will be returned.

4.2.2 App Monitor

The class AppMonitor is the central singleton module which controls every navigational
request to the application. It provides role-based navigational access control considering
SNPs.

In order to work properly, this module deals with the following session-based at-
tributes of every client:

2Maven JSON-lib. http://sourceforge.net/projects/json-lib/files/, last visited 2012-07-03

http://sourceforge.net/projects/json-lib/files/

4.2. MODULE COMPONENTS 21

i. username (needed to generate user specific violation messages)

ii. roles (separated by “;” and needed for the SecurityProvider.AccessVoter)

iii. pre visited (needed for the SecurityProvider.AccessVoter)

iv. req location (needed to remember the requested location in the case the surfer is
not logged in and is being redirected to the appropriate login context)

v. message (displayed message, shown on the violation nodes)

Figure 4.3: AppMonitor activity diagram

Figure 4.3 represents the execution of the AppMonitor component. The first check
this component performs after a navigational request is whether or not the requesting
client has at least one assigned role inside the application context. In other words,
the login state is checked. If not logged in, the requested node will be written as
req location into the session and the user is redirected to the login context, provided
by the SecurityProvider.

In order to be continuously aware of the last visited node inside the application
navigation, this component performs a process which writes, just before a redirect
occurs, the destination into the session as pre visited attribute.

In case the user is already logged in, the monitor checks which kind of resource is
requested. Requests without navigational contexts will pass (e.g., CSS-resources).

22 CHAPTER 4. MONITOR MODULE

Every request with navigational context has to be checked whether it is allowed
or not according to the SecurityProvider. Therefore, the process collects all the
necessary data records like the user roles, the last visited node inside the application
and of course the requested node. As described above, these parameters are passed
into the AccessVoter of the SecurityProvider which votes for yes or no correspond-
ing to the current request. If access is granted, the monitor redirects the user to
the requested node immediately. Otherwise, the violation node is determined by the
ViolationLocationProvider. Furthermore, an individual error message is generated
and written as message attribute into the session so that the violation node, where the
user is redirected to, can handle or present it to the user. It should be noted that this
component reads the requested node value directly out of the called URL file definition
(e.g., “http://www.myapp.com/appContext/protected/home.xhtml” leads to request-
edNode=home). Of course, this behavior can be redefined without much effort e.g., to
read this value corresponding to some request parameter inside the URL.

4.3 Preparing a Web Application to be Monitored

This section describes how an existing web application can be associated with the whole
monitoring module presented in this chapter. In addition, we motivate which behavior
and structure is recommended to guarantee a robust and user-friendly runtime.

4.3.1 Configuration

First of all, the classes of this module have to be available in the classpath of the
web application-backend. The cleanest way to do this is to create and provide a Java
Archive (JAR) of the monitor module.

The navigation rule file out of the design phase must be available on the outermost
level in the classpath too, and has to be named security.properties. The usage of
Java properties is proven as the de-facto standard for static and administrative Java
system configurations. Therefore, we decided to use Java properties instead of an usual
configuration file. Of course, the name and the exact position of this file can be modified
inside the class SecurityProvider.

The simplest way to provide navigational access control for a web application would
have been to monitor every single request and to decide whether the request is allowed
or not. However, to safe performance it is much better to perform access control for
navigation nodes which exhibit restrictions only (e.g., nodes with a role restriction or
at least one incoming transition inside the Navigation State Model of the design phase).
Therefore, they must have a directory named protected as last ancestor corresponding
to the pattern /protected/*/*.xhtml.

1 < !−− SECURITY FILTER −−>
2 < f i l t e r>
3 < f i l t e r −name>AppMonitor</ f i l t e r −name>
4 < f i l t e r −c l a s s>de . package . name . AppMonitor</ f i l t e r −c l a s s>
5 </ f i l t e r>
6 < f i l t e r −mapping>
7 < f i l t e r −name>AppMonitor</ f i l t e r −name>
8 <ur l−pattern>/ protec ted /∗</ ur l−pattern>
9 </ f i l t e r −mapping>

Figure 4.4: Filter mapping snippet from web.xml deployment descriptor

4.4. USED TECHNOLOGY 23

In addition, the AppMonitor must be registered on the URL-pattern /protected/*

inside the deployment descriptor, mostly the web.xml as shown in Figure 4.4. It should
be noted that the URL pattern can also be customized as required (e.g., by adding a
special suffix to every protected node).

After these steps, the monitor module will be able to manage the navigational
access control of the web application as described in this chapter. An alternative
to this configuration would have been to deploy the monitor module as independent
service. This approach would prevent the need to apply the configurations, introduced
in this section, to the existing web application. All the configuration work would be
done inside the monitor service. However, to work with common session attributes
between two independent applications would force the usage of cookies. Cookies can
be manipulated by the web user without much effort. Therefore, we decided to deploy
the web application and the monitor module as homogeneous system to avoid cookie-
based security leaks. Thus, our approach allows to store the session based information
inside the application server.

4.3.2 Recommended Behavior

In case of a web user requests a protected resource without being logged in, he should
be redirected to this resource after the login succeeds. Therefore, the managed JSF
bean of the login context view should redirect the user to the node indicated by the
session attribute req location in case of a successful login.

Robustness and user-friendliness are two major factors for high-quality software. [BB78]
Therefore, the managed bean of every violation node should read the session attribute
message and make it visible through the frontend for the user.

4.4 Used technology

The whole module is written in Java EE 1.6.3 The implementation of basic topics as
well as Dependency Injection (DI), JSON parsing and logging does not influence the
concept of this monitor module approach. Therefore, we decided to save a huge amount
of implementation work by using the following third party libraries:

i. Spring Framework4 (DI)

ii. Maven JSON-lib5 (validation and parsing of JSON structured content)

iii. Apache Commons6 (logging)

As alternative frameworks we could also have been using Guice7 for DI, GSON 8

for JSON parsing and SLF4J 9 for logging.

3Java EE 1.6. http://www.oracle.com/technetwork/java/javaee/downloads/index.html, last vis-
ited 2012-07-08

4Spring Framework. http://www.springsource.org/spring-framework/download, last visited 2012-
07-08

5Maven JSON-lib. http://sourceforge.net/projects/json-lib/files/, last visited 2012-07-03
6Apache Commons. http://commons.apache.org/, last visited 2012-07-10
7Google Guice. http://code.google.com/p/google-guice/, last visited 2012-07-24
8Google GSON. http://code.google.com/p/google-gson/, last visited 2012-07-24
9Simple Logging Facade For Java. http://www.slf4j.org/download.html, last visited 2012-07-24

http://www.oracle.com/technetwork/java/javaee/downloads/index.html
http://www.springsource.org/spring-framework/download
http://sourceforge.net/projects/json-lib/files/
http://commons.apache.org/
http://code.google.com/p/google-guice/
http://code.google.com/p/google-gson/
http://www.slf4j.org/download.html

24 CHAPTER 4. MONITOR MODULE

4.5 Summary

The monitor module is intended to handle every navigational request inside a web
application: In case the requesting web user is not logged this module ensures the
redirect to the login context. In case the user satisfies the constraints written in the
access-control rule file this module passes the request to the web application. In case of
a constraint violation this module redirects the user to the corresponding error node.

As announced at the beginning of this chapter, this is just one possibility how to
monitor a web application regarding the rules generated from the security modeling
phase. The constitution was inspired by established frameworks like Spring Security
and Apache Shiro. We discussed possible alternatives and corresponding advantages
or disadvantages. In summary, our approach was built under consideration of security,
robustness and performance aspects. Therefore, we were able to develop a sample web
application introduced in chapter 5 which fulfills highest quality standards for software
using our monitor approach.

Chapter 5

Case Study TicketApplication

As announced in the introduction part of this thesis, we introduce a new sample web
application called Ticket Application. Thus we provide a complete example of how the
techniques and approaches presented in this thesis can be applied concretely to a web
application and how they depend on each other.

After introducing the primary use case of our case study, this chapter shows UWE’s
basic rights model corresponding to the web application. Furthermore, we present the
modeling of the access control using UWE’s Navigation State Model considering Secure
Navigation Paths (SNPs). Right after that, we analyze the navigation rule file generated
by the MagicDraw plugin MagicSNP. Additionally, we list the set of necessary points to
apply our monitor module introduced in chapter 4 to the web application. Finally, we
present the third party frameworks we used to implement the complete web application.

5.1 Use Cases

In order to get a better understanding of the application behavior, we should take a
look to the corresponding use cases. They can be represented by the use case diagram
depicted in Figure 5.1.

Figure 5.1: TicketApplication: Use case diagram

25

26 CHAPTER 5. CASE STUDY TICKETAPPLICATION

The ticket application should represent a kind of complaint and order management
for any company and provides two roles namely admins and registeredUsers:

i. admins have the possibility to manage all stored user instances.

ii. registeredUsers have the permission to create or edit tickets.

Primary scenario (registeredUsers): Customers call the call center of the company.
They describe their concern and thereupon the operator will create a new ticket. In
order to do that, the operator must enter the customers identification number into the
system in order to load the complete customer information from an external database.
This customer instance will be assigned to the ticket. Right after that, the ticket nature
gets specified. Finally, the operator has to confirm the modifications on a separate
confirmation page.

Concurrently, the ticket is assigned to an agent, which opens it after the appropriate
execution and marks it as done, followed by the confirmation.

5.2 Basic Rights Model

Figure 5.2: TicketApplication: Basic rights model

UWE’s Basic Rights Model for the ticket application example, depicted in Fig-
ure 5.2, offers a compact notation for domain specific RBAC declarations. Basically,
it shows all available user roles in combination with the managed data domains of the
web application. Additionally, it specifies execution rights on methods with depen-
dencies stereotyped �execute� and �executeAll�. Further restrictions are defined in
comments stereotyped by �authorizationConstraint� in the OCL: Users with the role

5.3. NAVIGATION STATE MODEL 27

registeredUsers shall only be allowed to update a Ticket instance, when they are the
assigned owner.

5.3 Navigation State Model

Taking the use cases of section 5.1 into account, we get the instance of UWE’s Navi-
gation State Model shown in Figure 5.3 considering SNPs as described in chapter 3.

Figure 5.3: TicketApplication: Navigation State Model

The outermost state TicketApplication stands for the whole application. It holds
the tag unauthorizedAccess containing the default violation node error. The tag trans-
missionType=“cif” sets the overall type of data transmission during the session to cif,
providing for confidentiality, integrity, and freshness: The implementation should pre-
vent eavesdropping, replaying, or altering of transmitted data. [BKK11] As we can see,
the navigational nodes, represented by the states on the innermost level, are grouped
by three main areas or parent states: LoginArea, AdminArea and UserArea. Addi-
tionally, there are two different constraint violation nodes: adminError and error. In
case of a constraint violation situation inside the AdminArea the user gets redirected
to adminError. In any other constraint violation case the redirection points to error.

28 CHAPTER 5. CASE STUDY TICKETAPPLICATION

Every web user can access the login context node loginViaPasswordForm which is
inside the LoginArea indicated by the isHome tag.

Logged in users with the role admins can access the whole AdminArea, containing
the nodes adminHome and editCreateUser, indicated by the inherited roles tag. How-
ever, they must follow the deterministic SNP as defined by the transitions between the
navigation states. This means to get access to adminHome the user must exhibit the
role ’admins’ and he must have been on loginViaPasswordForm, adminError or editCre-
ateUser previously. In order to get access to editCreateUser the user needs to have the
same role but must have been on the node adminHome right before. Otherwise the user
gets redirected to the node adminError as described in the tag unauthorizedAccess.

Logged in users with the role registeredUsers are allowed to access the protected
resources userPostbox, editCreateTicket, selectExternalCustomer and confirmTicket in-
side the UserArea by following the nondeterministic SNP as indicated by the tran-
sitions: userPostbox is the initial state. Therefore, every ticket-operation inside the
UserArea must begin inside the userPostbox context. The next possible step is select-
ing a ticket or creating a new instance followed by the possibility to assign an external
customer. Finally, the ticket has to be confirmed and the user gets back to the userPost-
box context. The semantic meaning of the parent state UserArea can be interpreted in
the same way.

5.4 Extracted Navigation File by MagicSNP

The navigation rule file depicted in Figure 5.4 is generated by MagicSNP dynamically
corresponding to the state machine shown in Figure 5.3.

Figure 5.4: JSON structured navigation rule file for TicketApplication

It contains all the information needed for a monitor to provide navigational access
control including SNPs for a web application: The default violation node is error,
defined by the attribute default violation on the outermost level. Furthermore, every
single location entry holds the corresponding violation node and a list of access rules.
Every single rule entry represents an user role which is allowed to access the current
navigation node. In addition, the attribute pre visited defines on which navigation
nodes could the user have been right before to be inside a SNP.

5.5 Application of the Monitor Module

Following the security design phase the monitor module must be applied to the web
application under consideration of these points:

5.6. USED FRAMEWORKS AND TECHNOLOGIES 29

i. The monitor module is accessible in the classpath of the web application

ii. The AppMonitor is registered as a filter on the URL-pattern /protected/* in the
deployment descriptor

iii. The Java properties file security.properties is in the classpath of the web ap-
plication containing the extracted navigation rule file

iv. Every view-node which is under access control has a directory named protected

as last ancestor inside the application path structure

5.6 Used Frameworks and Technologies

For completeness, we provide the following list of the used frameworks and technologies
for this sample web application:

i. Database: MySQL Server 5.51

ii. Servlet container/Server: Apache Tomcat 7.0.82

iii. Backend: Java EE 1.63, Spring Framework4, Maven JSON-lib5, Apache Commons6

iv. Frontend: Java Server Faces (JSF) 2.0 by Mojarra7 and JavaServer pages Standard
Tag Library (JSTL) 1.28, Openfaces9

v. Access Control: Our monitor module (applied as described in chapter 4)

5.7 Summary

The web application works properly as expected and according to the access control
rules specified in the Navigation State Model. The main goal of providing access control
under the consideration of SNPs is completely reached by this approach.

Summarizing, this case study shows the reliability of our whole approach and how
easily it can be applied to a web application. The security based modeling part was
straightforward and did not take much effort. At runtime the monitoring module
does not cause latency issues at all as a result of using simple data structures and
slim-efficient process cycles throughout the module. The clear error message handling
contributes to the robustness and user-friendliness of the web application. In addition,
the widespread usage of clear logging messages guarantees an adequate standard of
maintainability for the system administrators.

1MySQL Server 5.5. http://dev.mysql.com/downloads/mysql/, last visited 2012-07-18
2Apache Tomcat 7.0.8. http://tomcat.apache.org/download-70.cgi, last visited 2012-07-24
3Java EE 1.6. http://www.oracle.com/technetwork/java/javaee/downloads/index.html, last vis-
ited 2012-07-08

4Spring Framework. http://www.springsource.org/spring-framework/download, last visited 2012-
07-08

5Maven JSON-lib. http://sourceforge.net/projects/json-lib/files/, last visited 2012-07-03
6Apache Commons. http://commons.apache.org/, last visited 2012-07-10
7JSF 2.0. http://javaserverfaces.java.net/download.html, last visited 2012-07-18
8JSTL 1.2. http://www.oracle.com/technetwork/java/index-jsp-135995.html, last visited 2012-
07-18

9Openfaces. http://openfaces.org/downloads/, last visited 2012-07-18

http://dev.mysql.com/downloads/mysql/
http://tomcat.apache.org/download-70.cgi
http://www.oracle.com/technetwork/java/javaee/downloads/index.html
http://www.springsource.org/spring-framework/download
http://sourceforge.net/projects/json-lib/files/
http://commons.apache.org/
http://javaserverfaces.java.net/download.html
http://www.oracle.com/technetwork/java/index-jsp-135995.html
http://openfaces.org/downloads/

30 CHAPTER 5. CASE STUDY TICKETAPPLICATION

Chapter 6

Conclusion and Outlook

The goal of this thesis was to fill the gap of missing possibilities to model and control
Secure Navigation Paths (SNPs) to enhance data protection within web applications.
Therefore, we developed a new approach on how to model the aspect of SNPs for web
applications efficiently using UWE’s Navigation State Model. It turned out that com-
pared to existing approaches which do not consider SNPs, our solution allows a more
specific definition of navigational access control for web applications: Our modeling
approach provides a modeling strategy which guarantees that every single user of the
system has to stay on a limited number of paths in the intended order. First of all,
this limits the possibilities of malicious attacks by safety-critical jumps through a web
application. Additionally, this restriction allows to guide the user through a web ap-
plication. Our new monitor module represents one possibility on how to apply the
designed semantics of the modeling approach to a web application. Because of using
simple data structures and efficient process cycles throughout the module, no latency
issues arise. The link between our modeling solution and our monitor approach is given
by our new MagicDraw plugin MagicSNP : It allows to validate the designed security
model and to extract the corresponding navigation rules. Therefore, this plugin does
what we expected: It secures and facilitates the handover between the modeling and
the implementation phase of the software-development process. The applicability of
our approaches is proven by our case study using a prototype called Ticket Applica-
tion. Additionally, this case study demonstrates all fundamental advantages of our
approaches: First, it shows how simple the navigational access control of an already
existing web application can be modeled while considering user rules, violation behavior
and SNPs. Second, it presents the way our monitor module and its components can be
installed and configured without much effort for an already existing web application.
Finally, this case study exhibits the comfort to validate the model and to extract all
necessary access-control semantics with one simple mouse click using MagicSNP.

Future work might enhance the possibilities and dynamics of the cooperation be-
tween the security design phase and the application runtime. Based on the concepts of
this thesis, a possible approach could be to link the design tool to a relational database
which is also accessible by the monitor module. This would be an advantage, because
at the moment we have to save the navigational rule file manually. By fetching the
rules dynamically from a database, a restart of the application server could be avoided
when loading new rule definitions. This would increase the efficiency of our approach.
Our approach was tested for correctness, robustness, user-friendliness and applicability
by a prototype web application. However, this prototype consists of nine different nav-
igation nodes and two different user roles. In order to prove scalability we will develop

31

32 CHAPTER 6. CONCLUSION AND OUTLOOK

different web application prototypes which exhibit much more complexity.
To conclude, this thesis provides, to the extent of our knowledge, the only possibility

to model and implement SNPs. Since SNPs raise the security of access control on a
higher level, the presented approaches should be concerned within the context of data
protection in modern web applications.

List of Figures

3.1 Simple Navigation State Model . 10
3.2 A transformation into Plain UML . 11
3.3 Using the MagicDraw plugin MagicSNP 12
3.4 Custom MagicDraw plugin MagicSNP : activity diagram 13
3.5 Extracted JSON structured navigation rule file 14

4.1 Rule Domains: Class diagram . 17
4.2 Module Components: Request life cycle 18
4.3 AppMonitor activity diagram . 21
4.4 Filter mapping snippet from web.xml deployment descriptor 22

5.1 TicketApplication: Use case diagram . 25
5.2 TicketApplication: Basic rights model 26
5.3 TicketApplication: Navigation State Model 27
5.4 JSON structured navigation rule file for TicketApplication 28

33

34 LIST OF FIGURES

Acronyms

API Application Programming Interface
CASE Computer-Aided Software Engineering
CD Compact Disc
CSS Cascading Style Sheets
DI Dependency Injection
GUI Graphical User Interface
IDE Integrated Development Environment
JAR Java Archive
JDBC Java Database Connectivity
JSF Java Server Faces
JSON JavaScript Object Notation
JSTL JavaServer pages Standard Tag Library
LDAP Lightweight Directory Access Protocol
OCL Object Constraint Language
PDF Portable Document Format
RBAC Role-Based Access Control
SNP Secure Navigation Path
UML Unified Modeling Language
URL Uniform Resource Locator
UWE UML-based Web Engineering

35

36 ACRONYMS

Content of the CD

The content of the enclosed CD is organized as follows:

/

Implementation Sources of implementations introduced in
this thesis

MagicSNP . Implementation of MagicSNP with Java

SNPMonitor Implementation of our monitoring module
with Java

TicketApplication Implementation of our case-study with
Java and JSF

Metadata . IDE-configuration instructions, TicketAp-
plication MySQL-dump, timetable

Paper . Copies of the related work that is refer-
enced in the thesis

Thesis . The written thesis in LATEX and PDF
format

Chapters . Chapters as tex-files

Images . Images used in the thesis

Presentation The Oberseminar presentation

37

38 CONTENT OF THE CD

Bibliography

[And08] R.J. Anderson. Security Engineering: A Guide to Building Dependable Dis-
tributed Systems, 2nd edn. Wiley, Chichester, 2008.

[BB78] B. Boehm and J. Barry. Characteristics of software quality. North-Holland
Pub. Co., 1978.

[BCE11] D. Basin, M. Clavel, and M. Egea. A decade of model-driven security. Ruth
Breu, Jason Crampton, and Jorge Lobo, pages 1–10, 2011.

[BK09] M. Busch and N. Koch. MagicUWE - A CASE Tool Plugin for Modeling
Web Applications. Gaedke, M., Grossniklaus, M., Diaz, O. (eds.) ICWE
2009. LNCS, 5648:505–508, 2009.

[BKK11] M. Busch, A. Knapp, and N. Koch. Modeling Secure Navigation in Web
Information Systems. Janis Grabis and Marite Kirikova, editors, 10th Inter-
national Conference on Business Perspectives in Informatics Research, 2011.

[Jür04] J. Jürjens. Secure Systems Development with UML. Springer, 2004.

[KK11] N. Koch and A. Kraus. The Expressive Power of UML-based Web Engineer-
ing. IWWOST´2002, 2011.

[LBD02] T. Lodderstedt, D. Basin, and J. Doser. A UML-Based Modeling Language
for Model-Driven Security. Proceedings of 5th International Conference on
the Unified Modeling Language, 2460:426–441, 2002.

39

	Introduction
	Related Work and Technical Possibilities
	Security Modeling
	UWE
	SecureUML
	UMLSec
	ActionGUI

	Security Frameworks
	Apache Shiro Web-Features
	Spring Security
	jGuard Web

	Summary

	Modeling Secure Navigation Paths with UWE
	Navigation State Model
	Our Modeling Approach
	Constraints
	Recommendations

	Representation of Secure Navigation Paths in Plain UML
	Supporting CASE Tool Plugin MagicSNP
	Usage of MagicSNP
	Implementation of MagicSNP

	Summary

	Monitor Module
	Rule Domains
	NavigationFile
	NavigationNode
	Rule

	Module Components
	Security Provider
	App Monitor

	Preparing a Web Application to be Monitored
	Configuration
	Recommended Behavior

	Used technology
	Summary

	Case Study TicketApplication
	Use Cases
	Basic Rights Model
	Navigation State Model
	Extracted Navigation File by MagicSNP
	Application of the Monitor Module
	Used Frameworks and Technologies
	Summary

	Conclusion and Outlook
	List of Figures
	Acronyms
	Content of the CD
	Bibliography

