
Modeling, Enforcing and Testing Secure

Navigation Paths for Web Applications∗

Marianne Busch1, Mart́ın Ochoa2 and Roman Schwienbacher1

1 Ludwig-Maximilians-Universität München
2 Siemens AG, Germany

June 2013

Technical Report 1301
Version 1.0

Research Unit of Programming and Software Engineering (PST)
Institute for Informatics
Ludwig-Maximilians-Universität München, Germany

∗This work has been supported by the EU-NoE project NESSoS, GA 256980.

Abstract

Although there exist robust solutions for managing authentication,
authorization and session management in web applications, the question
of effectively controlling the navigation flow for different users remains
challenging. In this report we propose a methodology that allows one
to specify Secure Navigation Paths (SNP) using UML models and auto-
matically generate a server-side monitor enforcing such policies. We also
discuss how those models can be used to generate tests in case a mon-
itor is absent. We report on tool support for this methodology and on
applications to a SmartGrid usage scenario.

Contents

1 Introduction 3

2 Background 3
2.1 Secure Navigation Paths . 4
2.2 UWE . 4

3 Secure Navigation paths with UWE 5
3.1 Modeling Approach . 5
3.2 Testing . 7
3.3 Tool Support . 8

4 Case Study 10

5 Related Work 13

6 Conclusions 15

2

1 Introduction

In the era of modern information technologies, where sensitive personal data is
stored and managed over the Internet on databases or remote servers, software
engineers are constantly faced with new and challenging tasks in the field of secu-
rity and user guidance. In general, there exist security frameworks that provide
means to enforce security and data protection for web applications: (1) Authen-
tication, which is the process of proving the identity of a user to gain access to
a protected resource; (2) Authorization, which is the process that determines
what a subject (e.g., a user or a program) is allowed to access, especially what it
can do with specific objects (e.g., files) [8]; (3) Encryption, which is the conver-
sion of data into a format that cannot be understood by unauthorized subjects
and (4) Session management, which is the process of keeping user-specific ap-
plication data while a user is authenticated to the system. Examples of such
security frameworks include Spring Security [5] and Apache Shiro[1]. Both were
designed to provide a high standard of security as comfortably as possible.

However, there is one important aspect of security in the area of data pro-
tection which usually remains challenging: A kind of navigational access control
which guarantees that users with a certain role has only a limited number of
Secure Navigation Paths (SNPs) inside an application’s context. Suppose a
web application procedure managed to open an online-banking-account, which
consists of about ten steps. What happens when a user, whether intentionally
or not, jumps from step two, “indicating the personal data”, to the last step,
“confirmation”, simply by calling the corresponding URL, and confirms the
transaction? This can not only lead to fatal inconsistencies on the application
state, but may also trigger a worst case scenario like losing money or seriously
damaging the image of the application provider.

The contributions of this report are twofold: on the one hand we propose a
methodology to define simultaneously RBAC and SNP policies for an applica-
tion by modeling the integrity of its business workflows using UML-based Web
Engineering (UWE) [12] and for safeguarding them at runtime by a monitor,
which also enforces navigational access control. On the other hand we provide
means for automatically testing SNP policies for applications not running an
enforcing monitor based on UML policies.

The remainder of this report is structured as follows: Section 2 provides
information about secure navigation paths and summarizes previous work on
modeling web applications with UWE. Section 3 is the central section. It shows
how to model SNPs with UWE and how to test them. Additionally, we present
tool support developed to validate our approach. Section 4 illustrates a usage
scenario from the SmartGrid domain. We review related work in Sect. 5 and
conclude in Sect. 6 where we discuss limitations and future work.

2 Background

In this section we briefly recall the addressed challenge of enforcing secure navi-
gation paths and the chosen modeling methodology, UML-based Web Engineer-
ing, which is part of our solution. UWE was chosen because it already enables
the web developer to model web applications including security features such as
access control or authentication.

3

2.1 Secure Navigation Paths

Among the most challenging web application vulnerabilities are the ones in-
volving the misuse of the application logic itself. As stated by the Common
Weakness Enumeration (CWE) [2]:

Errors in business logic can be devastating to an entire application.
They can be difficult to find automatically, since they typically in-
volve legitimate use of the application’s functionality.

Exploiting flaws in the business workflow is a common attack to the ap-
plication logic. These exploits typically consist of jumping to certain URLs,
bypassing critical controls of an intended flow or manipulating the parameters
of legal requests. The consequences of those attacks can be diverse: bypassing
log-in controls result in authentication breaches whereas skipping certain con-
trols in a trading operation might result in monetary benefits to the attacker.
Examples of documented vulnerabilities in popular web applications include
the Yahoo SEM Logic Flaw [7]: if one deposited USD $30 into an advertis-
ing account, Yahoo would then add an additional USD $50 to that account.
The sign-up process was able to be circumvented such that failing to deposit
the USD $30 still allowed to receive the additional USD $50. Other examples
include bypassing of age restrictions in Youtube, access to private photos in
MySpace (resulting in attacks to celebrities) among others (see [3]).

In recent years, much attention has been given to validating user input to
web applications to prevent code-injection (i.e. SQL, XSS), but very few tools
and methodologies are available to prevent and test logical errors (some at-
tempts include [16, 23]). This is due to the almost endless possible logical flaws
that could be present on an application ranging from obvious to very subtle
coding vulnerabilities. In this report we focus on one of the most commonly
abused logic vulnerabilities: the integrity of the navigation paths as intended
by the application owner, that is, the order in which authorized resources of an
application should be accessed by a given user role.

2.2 UWE

In the following, we outline UML-based Web Engineering (UWE) [12], the
security-aware engineering approach we have chosen for modeling web appli-
cations.

One of the cornerstones of the UWE language is the “separation of concerns”
principle, which is implemented by using separate models for different views.
However, we can observe that security features are cross-cutting concerns which
cannot be separated completely:

The Requirements Model defines (security) requirements for a project.

The Content Model contains the data structure used by the application.

The UWE Role Model describes a hierarchy of user groups to be used for
authorization and access control issues. It is usually part of a User Model,
which specifies basic structures, as e.g., that a user can take on certain
roles simultaneously.

4

The Basic Rights Model describes access control policies. It constrains ele-
ments from the Content Model and from the Role Model.

The Presentation Model sketches the web application’s user interface.

The Navigational State Model defines the navigation flow of the applica-
tion and navigational access control policies. The former shows which
possibilities of navigation exist in a certain context. The latter specifies
which roles are allowed to navigate to a specific state and the action taken
in case access cannot be granted. In a web application such actions can
be, e.g., to logout the user and to redirect to the login form or just to
display an error message. Furthermore, secure connections are modeled
here.

For each view, an appropriate type of UML diagram is used, e.g., a state
machine for the Navigational Model. In addition, the UWE Profile adds a set
of stereotypes, tag definitions and constraints, which can be downloaded from
the UWE website [20]. Further details of our modeling approach can be found
in the following section.

3 Secure Navigation paths with UWE

In this section we propose a solution for controlling the intended navigation
paths in web applications. The idea is to specify navigation policies by means
of UML state-chart diagrams (Sect. 3.1). Each node in the state machine rep-
resents a basic interaction step, i.e., (a part of) a web page. By using the
UWE approach, it is also possible to annotate transitions with necessary permis-
sions required to access a resource using a Role-Based Access Control (RBAC)
scheme. In this way, a monitor can be automatically generated that enforces
the desired navigation policies for multiple roles, separating the navigation con-
trol from the application itself. We also discuss how to automatically generate
tests for a given policy in case the monitor is absent, as is the case for legacy
applications (Sect. 3.2). In Sect. 3.3 we present tools we have written for (1)
supporting the user while modeling SNPs; (2) for exporting graphical model of
SNPs as text; (3) for monitoring web applications and (4) for testing them.

3.1 Modeling Approach

We focus on how to model basic SNPs, on a notation for specifying parameters
for web pages and on the relation of SNPs and RBAC.

Basic SNPs. As introduced in Sect. 2.2, UWE provides several views. For
each view, an appropriate UML diagram is selected. In UWE, UML state
machines are used to model the navigational structure of a web application. In
our case, states correspond to navigational nodes that are implemented as web
pages. Transitions define all possibilities to navigate from one page to another
and thus specify a policy for the navigation.

Building on UWE’s Navigational State Model, we define SNPs as follows: in
case a transition leads from state A to B, a user can visit page B after having
visited page A. If it should be possible to go back (e.g. with the back-button in

5

the browser), another transition has to connect B with A. For more than one
option, an arbitrary number of transitions can be used.

We use the behavior of UML composite states to model links which should
be available within a certain area at any time. “Composite” means states can
be nested within a composite state. If state Y and Z and an initial node are
nested inside a state A and the initial node is connected to Y , then transitions
to A activate Y (because of the inner initial node). A transition that leads
from A to an arbitrary new state B can be fired from inside A, no matter if Y
or Z is active. Consequently, A does not correspond to a web page itself, but
groups others. An example of a UWE navigational diagram expressing SNPs is
depicted in our case study (Sect. 4, Fig. 5).

In this way we model SNPs at a high level of abstraction, as no technical
details have to be given.

SNPs with Checked Parameters. However, many web pages use parame-
ters to pass, e.g., user input or session IDs to the next page. To model allowed
parameters specifically, we extend UWE’s Navigational State Model so that a
minimum of technical information can be specified, if needed. Our extension is
inspired by Braun et al. [10], who came up with a textual control-flow definition
language for MVC (Model-View-Controller)-based web applications. As our ap-
proach does not specify method names, but page names, it is not restricted to
MVC-based applications. Furthermore, information about allowed parameters
can easily be added to existing Navigational State diagrams, so that related
information about authentication, secure connections, navigational control as
well as SNPs can be overseen immediately. We add parameters to transitions
using a guard like [param = GET(par1:type1, par2:type2)]. GET or POST are
allowed and types can be bool, numeric or string (c.f. part a of Fig. 1).

Sometimes, a parameter should be added to requests within a certain area,
using the same value as at the first occurrence. For instance, a session ID is
not allowed to change during a session and selected items should not change
during the payment process. This can be modeled by a composite state which
comprises all transitions that should use fixed parameters. All navigational
states in UWE inherit from the stereotype �navigationalState�, for which a
tag called {fixedParam = POST(par1:type1, par2:type2)} can be set. Global
parameters are applied to all transitions where the target state is located within
the composite state. The choice of GET / POST for the composite state and
affected transitions has to be coherent in case inner transitions specify further
parameters. When leaving and entering the composite state again, the values
of the fixed parameters can of course be different than before.

Part b of Fig. 1 depicts this behavior: the bold transitions inherit the fixed
parameter. This means the value of item is set by the transition targeting
BuyEnergy. Afterwards, it cannot be changed until the OrderProcess is left.
The stereotype �collection� denotes that several Offers are shown. Each offer
is of the type EnergyOffer, which is defined by the tag {itemType}. If an offer
is bought, the confirmation cannot be shown for another one.

For simplicity, in the rest of this report we focus on modeling and enforcing
SNPs on web applications without imposing constraints on the parameters.
This is reasonable since important security parameters such as the session ID
are already handled automatically by development frameworks.

6

Figure 1: Example of expressing SNPs with UWE

Relation of SNPs and RBAC. Within UWE, modeling SNPs can easily go
hand in hand with modeling RBAC, where RBAC is twofold: on the one hand
we specify navigational access control, i.e., the behavior of a web application
if an unauthorized user accesses a web page. On the other hand, we express
access control on classes that are used in the implementation.

We also use the Navigational State Model of UWE to specify navigational
access control. For each �session� stereotype, denoting a user’s session, a tag
called {roles} can point to a set of roles from UWE’s Role Model. In order to
be able to access the web page represented by a state, a user has to have at
least one of the roles that are allowed to access this state. If this is not the case,
the tag {unauthorizedAccess} specifies which state should be used instead. This
state can then represent, e.g., a page with an error message or an advertisement
for a more expensive account.

In order to provide a full picture of access control in UWE, we briefly intro-
duce how to model RBAC on data objects with UWE. For the Content- and
the Basic Rights Model UML class diagrams are used. In the Content Model,
classes and their relationships are defined. These classes can then be reused
in the Basic Rights Model, where tagged UML dependencies connect role in-
stances to them for modeling RBAC (an example is shown for our case study
in Sect. 4, Fig. 4). These dependencies can be tagged by �create�, �readAll�,
�updateAll� or �delete�, which represents the common CRUD functions. For
example, �updateAll� means that a role can update all attributes of a class.
Dependencies can also directly point to an attribute (�update�, �read�) or to
a method (�execute�). Generally, the Basic Rights Model is equally expressive
as SecureUML [21], while the representation is less bulky, as discussed in [12].

In theory, it is possible to export both kinds of access control to XACML
(eXtensible Access Control Markup Language), as described in [14]. However,
up to now only the access control on data objects has been explored in practice.
Our approach complements this by using a monitor on the server side, which
enforces not only SNPs but also navigational access control.

3.2 Testing

In this subsection, we describe how to generate navigational test cases for web
applications with access control policies regarding SNPs. The main goal is to
cover every possible navigation context considering navigation history, current
navigation node, user role and access permission result. Comparing these re-
sults with given access control policies, we can detect possible access control

7

misbehavior issues.

In order to build navigational test cases we use the following approach based
on an UWE SNP policy given input: for each user role we walk through every
available SNP starting at the entry node which is marked as isHome. We navi-
gate from node to node inside the SNP until we come back to an already visited
node. This way we can test if the application behaves according to the spec-
ification (we can identify false negative access control behavior by collecting
occurring access denials). In order to detect possible violations of the integrity
of the policy, we simply try to leave the SNP on every node by requesting each
node which is currently not accessible by an outgoing transition and thus not
allowed. In this context, every granted access represents an incorrect behavior.
Figure 2 depicts such a navigation through a SNP including illicit node requests
on every node.

Figure 2: Test generation: Follow SNP and request illicit nodes

However, with every violating request we cause a navigation history which
does not correspond to the original SNP, and we possibly harm the state of
the application. Therefore, we need to reconstruct the previous SNP-valid nav-
igation context to go ahead: First, we have to fall back to the current entry
node to clear the navigation history. Second, we have to repeat the navigation
progress on the SNP until we achieve the previously visited node inside the SNP
to reconstruct the navigation context.

This testing process is efficient, since it has a complexity of O(rn3). Assum-
ing there are n possible navigation nodes and r user roles: Every navigation
node has up to n− 1 neighbors which are not accessible by an outgoing transi-
tion. By testing all roles, we get an amount of rn(n− 1) test cases which gives
an upper bound of O(rn2) tests. Considering the backtracking behavior to re-
construct the navigation context we have to visit up to n− 1 additional nodes
for every forbidden node. Consequently, we get a final complexity of O(rn3).
However, testing parameters cannot be exhaustive, as parameters can contain
arbitrary values. Extending our approach to consider constraints on parameters
is thus left as future work.

3.3 Tool Support

This subsection presents tool support that we developed to validate our ap-
proach. Only the tool MagicUWE existed before, which is used to model UWE
diagrams. We have implemented MagicSNP to export navigational access con-
trol rules that can be enforced by our SNPmonitor. For tests, our SNPpoli-
cyTester is employed.

8

MagicUWE. UWE models can be built using any UML CASE tool that
enables the import of UML profiles. We use the MagicUWE plugin [13] im-
plemented for MagicDraw that provides additional support for the developer so
that repetitive tasks can be avoided. Thus, instead of creating a basic element,
as a class, and applying a stereotype to it, UWE’s stereotyped elements can
be inserted directly from a toolbar. Besides, transformations between UWE
models can be performed semi-automatically.

MagicSNP. In order to validate a UML Navigational State Model and more-
over to extract the corresponding access control semantics we developed a CASE
tool plugin for MagicDraw called MagicSNP. By iterating through all hierarchi-
cal states and analyzing incoming transitions, state names and tags, our tool
fetches relevant information about navigational access control and SNPs. The
JSON-structured result can be taken as input for a security framework for a spe-
cific web application. In our case, the exported rules are read by the server-side
monitor. An example of a result file can be found in Sect. 4.

SNPmonitor. The SNPmonitor is our generic monitor module approach
which provides RBAC with SNPs for web applications considering modeled ac-
cess control semantics. Basically, this module is responsible to decide whether
or not a user is allowed to get access to a protected resource. The decision
making is based on the web user’s session information (e.g., previously visited
location, assigned user roles etc.) and a policy file (e.g., generated by Magic-
SNP). In order to ensure robustness, our monitor module also handles any kind
of access constraint violation: the web user is redirected to a corresponding er-
ror page including an appropriate error message with possibility to go back to
its previously visited navigation context.

Technically, our SNPmonitor is implemented as a Java EE application, using
the Spring Framework. [5] The code of a client application which should be
safeguarded does not have to be touched, the monitor just has to be added as
a filter to the Java EE deployment descriptor. Using a URL-pattern, it is also
possible to shield a certain part of a web application, e.g., web pages stored in
a protected/* directory.

SNPpolicyTester. In order to test already defined SNP policies for a specific
web application, as mentioned in Sect. 3.2, we developed a testing tool called
SNPpolicyTester. It parses a given security policy file and searches for false pos-
itive and false negative access control behavior. Therefore, it navigates through
every available SNP with every defined user role trying to leave the SNP on
each navigation node by requesting every possible illegal node in this context.
As a result, we get a detailed log file which allows a quick identification of traces
that are possible although they should be prohibited.

Additionally, we analyzed the runtime performance of our testing tool using
a benchmark client based on the TPC-W Benchmark[6]. Consequently, we are
able to compare the result with the complexity of our test generation process
according to Sect. 3.2: Fig. 3 depicts the average result of benchmarks we
performed with two user roles regarding ten, twenty, thirty and forty navigation
nodes. The result corresponds to the expected complexity of O(rn3).

9

Figure 3: SNPpolicyTester: Average benchmark result

4 Case Study

Smart grids use information and communication technology (ICT) to optimize
the transmission and distribution of electricity from suppliers to consumers, al-
lowing smart generation and bidirectional power flows – depending on where
generation takes place. With ICT the Smart Grid enables financial, informa-
tional, and electrical transactions among consumers, grid assets, and other au-
thorized users [24]. The Smart Grid integrates all actors of the energy market,
including the customers, into a system which supports, for instance, smart con-
sumption in cars and the transformation of incoming power in buildings into
heat, light, warm water or electricity with minimal human intervention. Smart
grid represents a potentially huge market for the electronics industry [26]. Two
basic reasons why the attack surface is increasing with the new technologies are:
a) The Smart Grid will increase the amount of private sensitive customer data
available to the utility and third-party partners and b) Introducing new data
interfaces to the grid through meters, collectors, and other smart devices create
new entry points for attackers. For a more detailed discussion on security issues
arising in this context see [15]. See also [18] for a current version of proposed
technologies to solve this power systems management and associated informa-
tion exchange issues. In the following we model a scenario in this domain, the
SmartGrid Bonus Application.

Basically, our SmartGrid Bonus Application represents a prototype of an
energy offer management including optional bonus handling. It provides two
different user roles namely Provider and Customer : Providers manage and sell
energy packages including optional bonus programs for customers. Customers
have the possibility to buy offered energy packages. Therefore, our application
lists all available energy offers and the customer selects a specific offer which
includes a bonus code. After buying an energy package, the application shows
the corresponding bonus code which contains a gift voucher, e.g., for online
shops. Finally, the customer gets a confirmation for the ordered energy.

In order to model the data structure managed by our case study, we use
UWE’s Content Model. Basically, it comprises two domain classes, EnergyOffer
and BonusProgram, which are also used in Fig. 4. An instance of the class
EnergyOffer represents a specific energy offer launched by an energy provider
including start and end date. Each object of EnergyOffer can include an arbi-

10

trary number of BonusProgram instances. A BonusProgram instance stands for
an additional bonus customers get, after they have bought the corresponding
EnergyOffer.

Figure 4: SmartGrid Bonus Application: Basic Rights Model

In order to model RBAC constraints we use UWE’s Basic Rights Model, de-
picted in Fig. 4. Basically, it uses classes of the Content Model on the left-hand
side in combination with user roles on the right-hand side. Access permissions
were defined by stereotyped dependencies: for our application, a provider has
no restricting constraints. By contrast, there is only a limited set of permis-
sions for users taking on the role of a customer: they are only allowed to read
instances of the class EnergyOffer and to call the methods buyOffer() and
generateBonusCode(). These permissions represent the basis for a customer
to list all available energy offers, to buy a specific offer and to eventually get a
bonus code. In order to define constraints like “a customer can only get access
to a bonus code after he bought an energy package” we now have to define
navigational access control policies using SNPs.

Therefore, we use UWE’s Navigational State Model as described in Sect. 3.1.
For our web application, the navigational structure should start at a login page.
After completing the authentication successfully, customers should be redirected
to an internal page where they can have a look at a list of offers. If they decide to
accept an offer they have to give their consent, before a confirmation is shown.
In case the energy offer was connected to a bonus program, a page containing
the bonus code is displayed before the final confirmation.

Notice that for our case study we make the assumption that names of pages
correspond to names of states and we do not model parameters – our monitor
then just forwards given parameters, if any.

Figure 5 depicts our Navigational State Model which contains the following
information: The outermost state SmartGridBonusApplication stands for the
whole application. The tag transmissionType="cif" sets the overall type of

11

data transmission during the session to cif, which stands for for confidentiality,
integrity, and freshness. Thus, the implementation should prevent eavesdrop-
ping, replaying, or altering transmitted data. As we can see, navigational nodes,
represented by the states on the innermost level, are grouped by three main ar-
eas or parent states: LoginArea, ProviderArea and CustomerArea.

Figure 5: SmartGrid Bonus Application: Navigation State Model

Every web user can access the login context node loginViaPasswordForm

which is inside the LoginArea indicated by the {isHome} tag. Inner states
are tagged by {unauthorizedAccess=Error} which represents the default vio-
lation node. Logged in users with the role customer can access the whole
CustomerArea indicated by the inherited {roles} tag. In addition, they must
follow the SNPs as defined by the transitions between the navigation states
to be allowed to request a protected node. This means, e.g., to get access to
showBonusCode the user has to be associated to the role customer and he must
have been on buyEnergy right before. In order to get access to customerHome

the user needs to have the same role but must have been on one of the nodes
loginViaPasswordform, showEnergyOffers or showConfirmation right before
and so on. Otherwise, the user gets redirected to the error state as defined in
the tag {unauthorizedAccess}. Each user which enters the constraint violation
node error gets logged out automatically as indicated by the entry event entry
/ logout().

12

SNPs for providers are modeled in an analogous manner as depicted in the
lower-left corner of Fig. 5.

Listing 1 shows an excerpt from the navigation rule file which is generated
by our tool MagicSNP from the state machine shown in Fig. 5.

It contains information for a generic monitor to provide navigational access
control including SNPs for a web application: The default violation node is
error, defined by the attribute default violation on the outermost level.
Furthermore, every single location entry holds the corresponding violation node
and a list of access rules. Each rule entry represents a user role that is allowed
to access the current navigation node. In addition, the attribute pre visited

specifies navigation nodes the user is allowed to come from.

This rule file can be imported in our SNPmonitor as well as in our SNPpol-
icyTester.

nav igat ion . f i l e ={
” comment” : ”Build t ime : 10 .10 .2012 11 : 1 2 : 3 8 ” ,
” app l i c a t i on ” : ”SmartGridBonusApplication” ,
” l o c a t i o n s ” : [. . .

{” l o c a t i o n ” : ” showEnergyOffers ” , ” v i o l a t i o n ” : ” e r r o r ” , ”home” : f a l s e ,
” r u l e s ” : [{ ” r o l e ” : ” customer” ,

” p r e v i s i t e d ” : [”customerHome”] }] } ,
{” l o c a t i o n ” : ”buyEnergy” , ” v i o l a t i o n ” : ” e r r o r ” , ”home” : f a l s e ,
” r u l e s ” : [{ ” r o l e ” : ” customer” ,

” p r e v i s i t e d ” : [” showEnergyOffers ”] }] } ,
{” l o c a t i o n ” : ”showBonusCode” , ” v i o l a t i o n ” : ” e r r o r ” , ”home” : f a l s e ,
” r u l e s ” : [{ ” r o l e ” : ” customer” ,

” p r e v i s i t e d ” : [”buyEnergy”] }] } ,
{” l o c a t i o n ” : ”customerHome” , ” v i o l a t i o n ” : ” e r r o r ” , ”home” : f a l s e ,
” r u l e s ” : [{ ” r o l e ” : ” customer” ,

” p r e v i s i t e d ” : [” showEnergyOffers ” ,
” showConfirmation” ,
” loginViaPasswordForm”] }] } ,

{” l o c a t i o n ” : ” showConfirmation” , ” v i o l a t i o n ” : ” e r r o r ” , ”home” : f a l s e ,
” r u l e s ” : [{ ” r o l e ” : ” customer” ,

” p r e v i s i t e d ” : [”buyEnergy” ,
”showBonusCode”] }] } ,

. . .] ,
” d e f a u l t v i o l a t i o n ” : ” e r r o r ”}

Listing 1: Excerpt from extracted JSON-structured navigation rule file

5 Related Work

In this section we firstly introduce approaches in the area of SNPs, which are re-
lated to business workflow integrity. Secondly, we briefly introduce alternatives
for using UWE.

As already mentioned, [10] recently published a robust approach for SNPs
for MVC-based web applications where policies are specified using an ad-hoc
textual notation. They also tackle race-conditions and handling of multiple
tabs within a browser, which is currently outside of the scope of our approach.
The parameter constraint in our approach was partially inspired by their textual
policy language, although our approach is mainly based on web pages, not on
methods. In UWE, some problems are inherently solved, as e.g., superstates
exist so that all transitions can be easily specified and there is no need to invent
extra notations for the ability to change decisions later or for the availability of
the back button.

In 2002, Scott et al. [27] described a system which is also based on a solution

13

using a monitor. A textual policy specifies validation constraints, mainly for pa-
rameters and cookies, in a language called Security Policy Description Language
(SPDL). This policy is then compiled to code which is executed by the monitor
when a page is accessed. Additionally, Message Authentication Codes (MACs)
can be added by the monitor when delivering a page so that, e.g., hidden form
fields can be secured from changes at the client-side.

Halle et al. [17] define a navigation state machine with session traces with a
focus on a formal model. However, the state machine is only a simple one with
no further information than a sequence of states which does not include parallel
states. If desired, their formal approach might be extended to describe UWE’s
navigational states model, including information given by the stereotypes, tags
and parallel states.

In [23] a method for secure design of business application logic is sketched.
It comprises strategies such as analyzing weaknesses caused by misconfiguration
of server-side components or by errors in the application logic. They suggest
to test several kinds of parameters, however they do not provide tool support.
Furthermore, it is recommended to define a clear design of the architecture, es-
pecially for components which update session data. The authors aim to provide
a good practice which certainly can be combined with our approach.

Additionally, a tool for servlet-based web applications is provided by Fel-
metsger et al. [16]. The tool, called Waler uses a composition of dynamic
analysis and symbolic model checking: Regarding the dynamic analysis, it ob-
serves the normal operation of a web application in order to infer behavioral
specifications that are filtered to reduce false positives. Afterwards, symbolic
model checking is used to identify program paths that are likely to violate these
specifications. Compared to our approach, models do not have to be created
manually, which is convenient, especially for legacy applications. However, the
price is that flaws in the navigation paths can only be detected with a certain
possibility. SPaCiTE [11] is a tool that generates concrete attack tests based on
model checking and mutation operators. It has been applied so far for testing
RBAC and XSS, but not for business workflow integrity.

To the best of our knowledge, no web framework exists that provide mech-
anisms to specify rules for SNPs externally, i.e., without diving into the imple-
mentation of the web application. Even frameworks that focus on security, as
e.g., Apache Shiro Web-Features [1], Spring Security [5] or jGuard Web [4] do
not tackle the issue of SNPs.

For this work we have used UWE. Other web engineering methods do not
include a navigational model and security aspects.

WebML [25] offers a so called hypertext model, but it is less fine grained
than UWE’s Navigational State Model so that SNPs cannot be ensured. Fur-
thermore, WebML includes no navigational access control. ActionGUI [9] is an
approach for generating complete, but simplified, data-centric web applications
from models. It provides an OCL specification of all functionalities, so that nav-
igation is only modeled implicitly by OCL constraints. Unfortunately, it would
be difficult to model SNPs with those constraints, because this would require
to model the whole web application, which can be tedious. SecureUML [21] is a
UML-based modeling language for secure systems. A dialect for classes (called
components) provides modeling elements for RBAC which are as expressive as
UWE’s Basic Rights Model. A similar approach is UACML [28] which also
comes with a UML-based meta-metamodel for access control, which can be

14

specialized into various meta-models for, e.g., RBAC or mandatory access con-
trol (MAC). Conversely to UWE, the resulting diagrams of SecureUML and
UACML are overloaded, as SecureUML uses association classes instead of de-
pendencies and UACML do not introduce a separate model to specify user-role
hierarchies. UMLsec [19] provides a UML extension with emphasis on secure
protocols. Similarly, SecureMDD [22] allows one to define security properties in
UML diagrams and generate code focusing primarily on security protocols for
smartcards.

6 Conclusions

It is common to restrict users of web applications to a certain workflow in
order to guarantee that the single business interaction steps and their order
are respected. Unexpected workflows can lead to security issues, especially
when the application does not properly handle those exceptions. In this report
we described how to model Secure Navigation Paths for web applications with
UWE’s Navigational State Model. UWE diagrams can then be exported using
a plug-in called MagicSNP for the CASE tool MagicDraw.

On the one hand we use the exported information as input for a monitor,
which assures that only proper sequences of requests reach the application. On
the other hand a test suite can be generated and executed in order to find
unnoticed flaws in the state handling existing applications that do not have a
monitor.

Furthermore, our case study shows the reliability of the proposed approach
and illustrates its simplicity. At runtime the monitoring module has proven to
scale well, as a result of using simple data structures and efficient process cycles
throughout the module. The clear error message handling contributes to the
robustness and user-friendliness of the web application.

Future work includes modeling finer grained SNP policies, by restricting the
internal flow of single dynamic pages, as one can think of workflow vulnerabilities
present in single dynamic pages that cannot be avoided with our methodology.
This future goal could be achieved for example by taking advantage of the hier-
archical nature of UML state-charts. Additionally, we will work on a larger case
study where parameters, passed between web pages, are restricted according to
our modeling approach.

15

References

[1] Apache Shiro. http://shiro.apache.org/.

[2] CWE-840: Bussiness Logic Errors. http://cwe.mitre.org/data/

definitions/840.html.

[3] Insufficient Process Validation, WASC Threat Classification.
http://projects.webappsec.org/w/page/13246943/Insufficient%

20Process%20Validation.

[4] jGuard. http://jguard.xwiki.com/.

[5] Spring Security. http://static.springsource.org/.

[6] TPC-W Benchmark. http://tpc.org/tpcw/.

[7] Yahoo SEM Logic Flaw. http://ha.ckers.org/blog/20080616/

yahoo-sem-logic-flaw/.

[8] R. Anderson. Security Engineering: A Guide to Building Dependable Dis-
tributed Systems, 2nd edn. Wiley, Chichester, 2008.

[9] D. Basin, M. Clavel, and M. Egea. Automatic Generation of Smart,
Security-Aware GUI Models. In ESSoS, LNCS 5965, pages 201–217.
Springer, 2010.

[10] B. Braun, P. Gemein, H. P. Reiser, and J. Posegga. Control-flow integrity
in web applications. In ESSoS, pages 1–16, 2013.

[11] M. Buchler, J. Oudinet, and A. Pretschner. SPaCiTE – Web Applica-
tion Testing Engine. Software Testing, Verification, and Validation, 2008
International Conference on, 0:858–859, 2012.

[12] M. Busch, A. Knapp, and N. Koch. Modeling Secure Navigation in Web
Information Systems. In J. Grabis and M. Kirikova, editors, 10th In-
ternational Conference on Business Perspectives in Informatics Research,
LNBIP, pages 239–253. Springer Verlag, 2011.

[13] M. Busch and N. Koch. MagicUWE - A CASE Tool Plugin for Modeling
Web Applications. In Gaedke, M., Grossniklaus, M., Diaz, O. (eds.) ICWE
2009. LNCS, volume 5648, pages 505–508. Springer, Heidelberg, 2009.

[14] M. Busch, N. Koch, M. Masi, R. Pugliese, and F. Tiezzi. Towards model-
driven development of access control policies for web applications. In Model-
Driven Security Workshop in conjunction with MoDELS 2012. ACM Digi-
tal Library, 2012.

[15] J. Cubo, J. Cuellar, S. Fries, J. A. Mart́ın, F. Moyano, G. Fernández,
M. C. F. Gago, A. Pasic, R. Román, R. T. Dieguez, and I. Vinagre. Se-
lection and Documentation of the Two Major ApplicationCase Studies.
NESSoS deliverable D11.2, 2011.

16

http://shiro.apache.org/
http://cwe.mitre.org/data/definitions/840.html
http://cwe.mitre.org/data/definitions/840.html
http://projects.webappsec.org/w/page/13246943/Insufficient%20Process%20Validation
http://projects.webappsec.org/w/page/13246943/Insufficient%20Process%20Validation
http://jguard.xwiki.com/
http://static.springsource.org/
http://tpc.org/tpcw/
http://ha.ckers.org/blog/20080616/yahoo-sem-logic-flaw/
http://ha.ckers.org/blog/20080616/yahoo-sem-logic-flaw/

[16] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna. Toward automated
detection of logic vulnerabilities in web applications. In Proceedings of
the 19th USENIX conference on Security, USENIX Security’10, page 10,
Berkeley, CA, USA, 2010. USENIX Association.

[17] S. Hallé, T. Ettema, C. Bunch, and T. Bultan. Eliminating navigation
errors in web applications via model checking and runtime enforcement of
navigation state machines. In Proceedings of the IEEE/ACM international
conference on Automated software engineering, ASE ’10, pages 235–244.
ACM, 2010.

[18] International Electrotechnical Commission (IEC). IEC 62351 Parts 1-8,
Information Security for Power System Control Operations.

[19] J. Jürjens. Secure Systems Development with UML. Springer, 2005.

[20] LMU. Web Engineering Group. UWE Website. http://uwe.pst.ifi.

lmu.de/.

[21] T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A UML-Based Mod-
eling Language for Model-Driven Security. In Proc. 5th Int. Conf. Unified
Modeling Language (UML’02), volume 2460 of Lecture Notes in Computer
Science, pages 426–441. Springer, 2002.

[22] N. Moebius, K. Stenzel, H. Grandy, and W. Reif. SecureMDD: A Model-
Driven Development Method for Secure Smart Card Applications. In Avail-
ability, Reliability and Security, 2009. ARES ’09. International Conference
on, pages 841 –846, march 2009.

[23] F. Nabi. Designing a secure framework method for secure business ap-
plication logic integrity in e-commerce systems. I. J. Network Security,
12(1):29–41, 2011.

[24] National Energy Technology Laboratory. A vision for the smart grid. Re-
port, June 2009. http://www.netl.doe.gov/moderngrid/.

[25] R. Rodriguez-Echeverria, J. M. Conejero, P. J. Clemente, M. D. Villalobos,
and F. Sanchez-Figueroa. Generation of webml hypertext models from
legacy web applications. In 14th IEEE International Symposium on Web
Systems Evolution (WSE), pages 91–95, 2012.

[26] R. Schneiderman. Smart grid represents a potentially huge market for the
electronics industry. IEEE Signal Processing Magazine, 27(5):8–15, 2010.

[27] D. Scott and R. Sharp. Abstracting application-level web security. In Pro-
ceedings of the 11th international conference on World Wide Web, WWW
’02, pages 396–407. ACM, 2002.

[28] N. Slimani, H. Khambhammettu, K. Adi, and L. Logrippo. UACML: Uni-
fied Access Control Modeling Language. In NTMS 2011, pages 1–8, 2011.

17

http://uwe.pst.ifi.lmu.de/
http://uwe.pst.ifi.lmu.de/
http://www.netl.doe.gov/moderngrid/

	Introduction
	Background
	Secure Navigation Paths
	UWE

	Secure Navigation paths with UWE
	Modeling Approach
	Testing
	Tool Support

	Case Study
	Related Work
	Conclusions

