Model-Driven Web Engineering

UWE Approach

Nora Koch

Web Engineering Group
Ludwig-Maximilian-Universität München (LMU)
Germany

Madrid, 28.05.2008
Web Engineering Group of LMU

- **Current staff**
 - Alexander Knapp and Nora Koch
 - Gefei Zhang (PhD student)
 - Christian Kroiß and Marianne Busch (students)
 - Martin Wirsing (head of department)

- **Projects**
 - UWE
 - MAEWA
 - SENSORIA

- **Cooperations**
 - Universities of Alicante, Extremadura, Málaga, Sevilla (ES), Milano (IT), Viena & Linz (AT), Lingby (DK), LaPlata (AR)
 - Industry: FAST/Cirquent, S.Co LifeScience

- **Other activities**
 - ICWE conferences since 2003
 - MDWE workshops since 2005
 - MDWEnet initiative since 2006
Web Engineering

- Software Engineering for the Web domain
- Concept introduced by San Murugesan in 1998

Definition
- Web engineering is the application of a **systematic and quantifiable approach** to cost-effective requirements analysis, design, implementation, testing, operation, and maintenance of **high-quality Web software**.
- Web engineering is also the **scientific discipline** concerned with the study of these approaches.

Gerti Kappel, Birgit Pröll, Siegfried Reich, Werner Retschitzegger
Web Engineering (2006)

- Established as own discipline
- Model-Driven Web Engineering relevant topic as many Web engineering approaches follow a **model-driven development approach**
Outline

- Web Software and Model-Driven Development
- UWE Approach
 - Modelling Language
 - Metamodel
 - Development Process
 - Tool Support
- Outlook
Web Software

Web information system (WIS)

- software system based on client/server technology provides information through a user interface (Web browser). Pages belong to a particular domain name or subdomain on the World Wide Web
 - Web site, homepage, Web portal

- Web application
 - software system that provides Web specific resources such as content and services through a Web browser

- Web service
 - software system designed to support interoperable machine to machine interaction over a network. Web services are frequently just application programming interfaces (API) that can be accessed over a network, such as the Internet, and executed on a remote system hosting the requested services

\(^1\text{W3C, www.w3.org}\)
Categories of WIS and Web Applications

- Document based
- Transactional
- Interactive
- Workflow-based
- Collaborative
- Ubiquitous
- Semantic web
- Portal-oriented

Web Specifics in Engineering

- **Hypermedia paradigm**
 - nodes & links
 - text & multimedia

- **Omnipresent due to the nature of the Web**
 - global and permanent availability
 - comfortable and unified access
 - distributed information / services

- **Dynamic development**
 - incremental number of Web pages
 - continuous improvement of existing Web applications (content, links, layout)
 - offer of new services
 - adaptation required by new Web technologies

- **Management aspects**
 - multidisciplinary development team
 - inhomogeneous and immature technical infrastructure
 - short product lifecycles → short development cycles

Specific engineering methods for the Web domain
Model-Driven Development

- MDD approaches based on
 - models, metamodels and model transformations
- MDD approaches require languages for
 - specification of models
 - UML, BPMN, …
 - description of metamodels
 - UML, MOF, OCL, …
 - definition of model transformations
 - Java
 - Graph transformations
 - ATL, QVT, …
- Model-Driven Architecture (MDA)
 - computational independent model (CIM)
 - platform independent model (PIM)
 - platform specific model (PSM)
Model Transformations

- Goal is automatic translation between source and target models
- Translation performed by a transformation engine that executes transformation rules
- Set of rules
 - seen as a model
 - based on a transformation metamodel
- Metamodels are based on a metametamodel
- MDA model transformations
 - CIM2PIM
 - PIM2PIM
 - PIM2PSM

Model transformation pattern (J. Bézivin, 2004)
Web Engineering Methods

- **HDM / HDM-lite**: Hypertext Design Model
- **Hera**: Navigational Development Technique
- **NDT**: Hypertext Modeling Method (HM³)
- **MIDAS**: Service-Oriented Development Method (SOD-M)
- **OO-H**: Object-Oriented Hypermedia Method
- **OOHDM**: Object-Oriented Hypermedia Design Method
- **OOWS**: Object-Oriented Web Solution
- **RMM**: Relationship Management Methodology
- **UWE**: UML-based Web Engineering
- **W2000**:
- **WAE / WAE2**: Web Application Extension
- **WebML**: Web Modeling Language
- **WebSA**: Web Software Architecture
- **WSDM**: Web Site Design Method

Based on
- **ER**: Entity Relationship Model
- **OMT**: Object Modeling Technique
- **UML**: Unified Modeling Language
Several methods propose building models
 - Hera, MIDAS, OOHDM, OO-H, UWE, WebML, …
 - separation of concerns
 - content
 - navigation
 - presentation
 - business processes
 - adaptation, …
 - similar Web specific modeling elements
 - different notations

Some methods define metamodels for modelling languages

Few approaches address model transformations
 - MIDAS, OOWS, UWE, WebSA, …

Goal of almost all
 - Platform specific models in a late development stage
Main characteristic is the use of UML for all models
- “pure” UML whenever possible
- UML extension for Web specific features: UML profile

Use of OMG standards, such as UML, MDA, MOF, OCL, XMI, …

Focuses on systematisation and automatic generation

UWE comprises
- a modelling language for the graphical representation of models of Web applications
- a metamodel for UWE modelling elements
- a development process
- tools supporting semi-automatic generation
 - MagicUWE & ArgoUWE editors for the design
 - set of ATL transformations
 - model-to-model and model-to-code transformations
 - set of plugins integrated in eclipse environment
Dimensions of Web Modelling

- **Levels**
 - Presentation
 - Hypertext
 - Content
 - Structure
 - Behaviour

- **Adaptivity**
 - Levels

- **Phases**
 - Requirements Analysis
 - Design
 - Implementation

Aspects

Modelling process

- Information-driven ("content first")
- Presentation-driven ("layout first")
- Functionality-driven ("business processes first")

Source: Kappel et al. Web Engineering, d-punkt (2003)
Why UML?

- UML is a graphical language for specifying, constructing and documenting software artifacts
- UML is a de facto industry standard and an OMG standard
- UML includes
 - notation
 - diagram types
 - Object Constraints Language (OCL)
 - metamodel
 - well-formedness rules
- UML does not provide a development process

How expressive is UML for the development of Web applications?
- UML does not include specific Web model elements
- UML defines extension mechanisms → UML profiles
UML Extensions

- **Light weight extension**
 - called a **UML profile**
 - based on extension mechanisms provided by UML
 - defines stereotypes for new metaclasses
 - domain specific: EJB «bean», «session», «entity», …
 - defined in the UML: «metaclass», «trace», «file», …
 - tagged values for metaattributes
 - OCL constraints for invariants, pre- and postconditions
 - CASE tool support by UML tools

- **Heavy weight extension**
 - different notation
 - other diagram types not defined in the UML
 - need of proprietary CASE tool
Analysis and Design Models in UWE

- Analysis models of a Web application
 - functional requirements are specified by
 - uses cases
 - workflows
 - data (content) requirements are specified by
 - domain models

- Design models of a Web application
 - information aspects
 - content model
 - hypertext structure and navigation functionality
 - navigation model
 - layout schema
 - presentation model
 - functionality
 - process model
 - adaptivity model
Example: Simple Music Portal

- **Inspired by** www.mp3.com
 - offers albums for downloading
 - contains information about albums, songs and artists
 - this information is available for free
 - registered users can download them
 - for downloading they need to have enough credit on their prepaid account
 - accounts are rechargeable
Modelling Requirements with UWE

- Graphical visualization by UML use case diagram
 - to model required functionality
 - distinguishes between navigation and process use cases
- Web specific model elements (not yet implemented in MagicDraw)
 - «navigation» use cases for browsing tasks
 - browse use cases
 - view use cases
 - search use cases
 - «web process» use cases for other tasks
 - other use cases
Content Modelling

- Representation of domain information
 - persistent data

- Modelling technique
 - UML class diagram
 - plain UML
 - no additional semantics required

UML class diagram:

- **Album**
 - title : String
 - price : float
 - recorded : Date
 - cover : String
 - description : String
 - downloadURL : String

- **Genre**
 - name : String

- **Track**
 - number : int
 - length : Integer

- **Song**
 - title : String

- **Performer**
 - description : String

- **Group**
 - name : String
 - formed : Date [0..1]
 - disbanded : Date [0..1]

- **Artist**
 - lastName : String
 - firstName : String
 - born : Date
 - died : Date [0..1]
User Model

- Representation of session specific information
 - allows for customization
- Represented as UML class diagram
 - “normal” UML classes
 - Visit object for each session
 - «visitClass»
Navigation Modelling

- **Goals**
 - to represent nodes and links of the hypertext structure
 - to design navigation paths
 - to avoid disorientation and cognitive overload

- **Navigation model**
 - represented by a UML class diagram
 - uses specific modelling elements for Web concepts

- **Basic elements to model the core hypertext structure**
 - «navigation class» specifies a hypertext node visited by a user through browsing (related to a content class)
 - «navigation link» specifies a hyperlink used to access the target navigation object from the source navigation object
Access Primitives

- Systematic enhancement of the navigation structure model by
 - «index» for all navigation links which have multiplicity > 1 at the directed association end
 - «menu» for all navigation classes with more than 1 outgoing association

- Design decision to include
 - «guidedTour» instead of index
 - «query» for selection of instances of a navigation class
 - tagged value `home` to indicate starting point of the application (node without ingoing links)
 - tagged value `landmark` to indicate that a node is reachable from everywhere (all other nodes include a link to the landmark node)

- Shortcuts for more complex constructs (if represented in UML without extension)
Navigation Model Elements: Menu

- **Menus** are used to structure the outgoing links from a node
 - usually associated to a navigation class by composition
 - consists of a set of links to heterogeneous elements, such as indexes, guided tours, queries, instances of navigation classes or other menus
 - UML stereotype: «menu»

- Semantics of menu
Navigation Model
(excerpt)
Modelling Processes in UWE

- **Navigation model of a Web application**
 - represents the static information structure accessible to a user of the system
 - specifies browsing (navigation) functionality

- **Process model**
 - represent the dynamic aspects of a Web application
 - specifies functionality, such as transactions and complex workflows of activities

- Process modelling consists of
 - definition of process classes (for non-navigation use cases)
 - integration of these process classes in the navigation model
 - description of the behaviour through a process flow
 - represented as UML activity diagram
Process Elements

- **Process class** represents the process through which the user will be guided in the Web application
 - for complex process that require more than a single class, an additional process model is built
 - UML stereotype: «process class»

- **Process link** is used to model the association between a «navigation class» and a «process class»
 - indicates entry points and exit points of processes within the navigation structure
 - UML stereotype: «process link»
Modelling the Process Flow

- The behavior of a Web process is defined by the process flow model
 - represented by UML activity diagram
 - result of the refinement of the activity diagram drawn for requirements specification
 - «process class» stereotype
 - optional use of nested activity diagrams

- Process flow consists of
 - flow of execution represented by activity nodes connected by activity edges
 - control nodes that provide flow-of-control constructs, such as decisions and synchronization
 - object nodes that represent data flowing along object flow edges or pins associated to the actions
 - in UML2 the semantic of activities is based on control and data token flows, similar to Petri nets
Process Model: Login
Modelling Presentation

- Representation of layout for the underlying navigation and process models
 - is an abstract presentation
 - concrete presentation requires specification of additional physical properties of the layout
 - colour, position, …
 - # of columns in table, type of menu, …

- Presentation classes represent Web pages or part of pages
 - composition of user interface elements
 - hierarchical composition of presentation elements

- UML class diagram for the structure of the presentation
 - using UML container notation

- UML interaction diagram (sequence diagrams)
 - used for modelling behaviour of presentation classes (classical UML)

- Alternative: development of a prototype
Presentation Model Elements

- Structural presentation elements
 - «presentationClass»/ «presentationGroup»: container of user interface elements representing a logic unit of presentation associated to a navigation class or process class
 - «presentationPage»: presentation class at highest level
 - «presentationAlternatives»: container for presentation classes which are not shown simultaneously

- User interface elements
 - «anchor»
 - «button»
 - «text»
 - «image»
 - «textInput»
 - «selection»
Adaptive Web Applications

- Adaptation/Customization for
 - user properties: knowledge, tasks, preferences, interests
 - context properties: location (place and time) & platform (HW, SW, network)

- Update of a user model / context model
 - observation of the user behaviour or environment by the system

- Techniques for adaptation
 - **content** adaptation
 - inserting and removing text/multimedia features
 - content variants
 - **navigation** adaptation
 - link ordering
 - link annotation
 - link hiding
 - link generation
 - **presentation** adaptation
 - modality adaptation (audio or text)
 - language selection
 - layout variants (resizing of fonts, images, changing colours)
Modelling Adaptivity

- UWE uses a technique called Aspect-Oriented Modelling (AOM)
- Identification of
 - «pointcut» (including conditions)
 - «advice»
- Weaving the result into the web application based on
 - current state of the user model
 - information provided by link traversal
- Example: links only visible for registered users to
 - BuyAlbum
UWE Metamodel

- UWE Metamodel is defined as a conservative extension of UML 2.0
 - model elements of the UML metamodel are not modified
 - all new elements are related by inheritance to at least one model element of the UML
 - use of OCL to specify additional semantics of the new elements
 - so-called light-weighed extension of UML
UWE Metamodel Characteristics

- UWE metamodel
 - reflects separation of concerns in the structure of Core
 - shows cross-cutting aspect of adaptation
- UWE metamodel is profileable
 - mapping to a UML profile is possible
- UWE metamodel is MOF compatible
 - uses XML metadata interchange format (XMI)
UWE Metamodel: Navigation

(see stereotypes used in the example)
UWE Profile: Navigation

- UML stereotypes for Web specific concepts used for the specification of the hypertext structure
- Extends relationships
- UML metaclasses

Diagram:

- «profile» Navigation
- «metaclass» Class
- «metaclass» Property
- «metaclass» Association
- «stereotype» Node
- «stereotype» NavigationProperty
- «stereotype» Link
- «stereotype» ProcessClass
- «stereotype» NavigationClass
- «stereotype» Access Primitives
- «stereotype» ProcessLink
- «stereotype» Menu
- «stereotype» GuidedTour
- Dependencies: Dependency
- «stereotype» Primitive2Property
- «stereotype» NavigationClass2Menu
Model-Driven Process of UWE

- Graphical representation of the process
 - process as UML activity diagram
 - model transformations as stereotyped UML actions
 - models as UML object flow states
 - implicit initial and final state

- Types of models in UWE
 - requirements model (CIM)
 - functional models (PIM)
 - content model
 - navigation model
 - ...
 - architecture models (PIM)
 - integration models (PIM)
 - models for J2EE, .Struts (PSM)
UWE Development Process
Requirements to Functional Models

- Requirements Model
 - «CIM2PIM» Requirements2Content
 - «CIM2PIM» Requirements2Navigation
 - «CIM2PIM» Requirements2Process

- Content Model
 - «PIM2PIM» Content2Navigation

- Navigation Model
 - «PIM2PIM» Navigation2Content
 - «PIM2PIM» Navigation2Process
 - «PIM2PIM» Navigation2Navigation

- Process Model
 - «PIM2PIM» Process2Navigation

Web Software & MDD
- UWE Approach
- Modelling Language
- Metamodel
- Development Process
- Tool Support
Construction of Functional Models

- UWE metamodel and UWE profile
 - navigation elements: *navigation class*, *navigation link*, *index*, …
 - presentation elements: *presentation class*, *anchor*, *image*, …

- Case tool ArgoUWE/MagicUWE
 - extension of ArgoUML/MagicDraw
 - provides UWE Profile
 - supports (semi-)automatic execution of transformations
Transformation Content to Navigation

- **Content2Navigation**
 - generates navigation classes from content classes
 - adds a navigation links based on associations of the content model

- **Marking elements**
 - identification of classes of the content model that are relevant for the navigation view
 - task performed by designer

- **Implementation**
 - ArgoUWE/MagicUWE plugin implemented in Java
 - ATL (ATLAS Transformation Language)
Refinement of Navigation Model

- Improvement based on patterns
 - index for associations with multiplicity greater than one at the directed association end
 - menu for navigation classes with multiple outgoing associations

- Implementation
 - Java in ArgoUWE/MagicUWE
 - ATL
Integration with Architecture Models

- **Web Software Architecture (WebSA) approach***
 - domain specific language for modelling architectural views of Web applications
 - subsystem model
 - configuration model
 - integration model
 - UML profile of architectural modelling elements
 - Web component
 - Web port
 - Web connector
 - server page,
 - etc.
 - model transformations written in QVT-P

Generating “Big Picture” Model

- Generation of an integrated functional model (“big picture”)
 - transformation target UML state machine for integration of content, navigation and process models
 - graph transformation language
 - tool: Attributed Graph Grammar System (AGG)
 - validation of correctness by model checking
Capture navigation nodes as states (with parameters for data)

Example: music portal: transformation for navigation node “song”
Big Picture: Transformation of Business Process
Model Validation

- Model transformations for Web applications based on UWE and its UML-based metamodel
- Graph transformations into integrating UML state machine
- Model validation by model checking using Hugo/RT (http://www.pst.ifi.lmu.de/projekte/hugo)
- Automation of transformation process using Attribute Graph Grammars (AGG)
Generation of Web Applications

- UWE uses a transformational approach
 - to generate data model and presentation layer
 - based on content, navigation structure and presentation models
 - transformation rules from UWE content model to Java beans
 - transformation rules from UWE presentation model to Java Server Pages (JSPs)
- UWE uses an interpretational approach
 - using a virtual machine
 - to interpret the process model (activity diagrams)
 - configuration data for the virtual machine is generated from process and navigation model
- Implemented so far
 - using the Spring framework
 - transformations defined in ATLAS Transformation Language (ATL)
Model to Code Transformations
Classification of UWE Model Transformations

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Characteristics</th>
<th>Type</th>
<th>Complexity</th>
<th>Marks</th>
<th>Execution</th>
<th>Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Req2Content</td>
<td></td>
<td>CIM to PIM</td>
<td>simple</td>
<td>WebRE profile</td>
<td>automatic</td>
<td>QVT</td>
</tr>
<tr>
<td>Req2Architecture</td>
<td></td>
<td>CIM to PIM</td>
<td>simple</td>
<td>-</td>
<td>manual</td>
<td>-</td>
</tr>
<tr>
<td>Content2Navigation</td>
<td></td>
<td>PIM to PIM</td>
<td>simple</td>
<td>navigation relevance</td>
<td>semi-automatic</td>
<td>Java, ATL</td>
</tr>
<tr>
<td>NavigationRefinement</td>
<td></td>
<td>PIM to PIM</td>
<td>simple</td>
<td>UWE profile & patterns</td>
<td>automatic</td>
<td>Java</td>
</tr>
<tr>
<td>Req2Navigation</td>
<td></td>
<td>CIM to PIM</td>
<td>merge</td>
<td>WebRE profile</td>
<td>automatic</td>
<td>QVT</td>
</tr>
<tr>
<td>Navigation2Presentation</td>
<td></td>
<td>PIM to PIM</td>
<td>simple</td>
<td>UWE profile</td>
<td>automatic</td>
<td>Java, ATL</td>
</tr>
<tr>
<td>StyleAdjustment</td>
<td></td>
<td>PIM to PIM</td>
<td>merge</td>
<td>style guide</td>
<td>automatic</td>
<td>Java</td>
</tr>
<tr>
<td>Functional2BigPicture</td>
<td></td>
<td>PIM to PIM</td>
<td>merge</td>
<td>patterns</td>
<td>automatic</td>
<td>graph transformations</td>
</tr>
<tr>
<td>Functional&Architecture2Integration</td>
<td></td>
<td>PIM to PIM</td>
<td>merge</td>
<td>UWE & WebSA profile</td>
<td>automatic</td>
<td>QVT-P</td>
</tr>
<tr>
<td>Integration2J2EE</td>
<td></td>
<td>PIM to PSM</td>
<td>merge</td>
<td>patterns</td>
<td>automatic</td>
<td>QVT-P, ATL</td>
</tr>
</tbody>
</table>
Tool Support for UWE

- **Goal**
 - support of **UWE notation** for design of Web applications
 - separation of concerns (navigation, process, presentation, …)
 - implementation of **UWE development process** allowing for semi-automatic model generation
 - support of **model validation** checking models consistency
 - code generation
ArgoUWE & MagicUWE

- Extension of ArgoUML
 - advantages
 - open source UML CASE tool
 - easy extension of design critics feature for checking model consistency
 - XMI output as basis for code generation
 - disadvantages
 - still based on UML 1.x
 - inherited usability problems
 - Plugin for ArgoUML 0.16

- Extension of MagicDraw
 - advantages
 - based on UML 2
 - UML profile definition support
 - XMI output
 - disadvantages
 - commercial tool
 - distribution of UML profile
 - Plugin for MagicDraw 15.0

- Plugins for other CASE tools
 - Rational Software Modeller
 - interest in further extensions supporting UWE notation and model transformations
MagicUWE

Web Software & MDD
UWE Approach
Modelling Language
Metamodel
Development Process
Tool Support

Madrid – 2008 – Nora Koch
Development Environment

- Eclipse based
 - PIM2PIM transformations (ATL)
 - PIM2PSM & PSM2Code (ATL)
 - written in ATL
- Spring Framework
- Java Server Pages
Evolution of UWE

<table>
<thead>
<tr>
<th></th>
<th>Modelling Language</th>
<th>Metamodel</th>
<th>Development Process</th>
<th>Tool support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Status</td>
<td>UML profile for content, navigation, process, abstract presentation, adaptation</td>
<td>Conservative extension of UML metamodel (light-weight) and profileable</td>
<td>Different languages for model transformations</td>
<td>CASE tool ArgoUWE, Eclipse plugins Spring JSP</td>
</tr>
<tr>
<td>Ongoing Work</td>
<td>Extension for concrete presentation, requirements and services</td>
<td>Evolving to include modelling elements for concrete presentation and services</td>
<td>Model transformation language ATL</td>
<td>Plugin for MagicDraw Eclipse plugins JSF</td>
</tr>
<tr>
<td>Future Work</td>
<td>Extension for Web 2.0</td>
<td>Evolving to include modelling elements for Web 2.0</td>
<td>Model transformation language QVT (if standardized)</td>
<td>Plugins for other CASE tools Editors for development environment</td>
</tr>
</tbody>
</table>
Literature

- **Web Engineering: Modelling and Implementing Web Applications**

- **Web Engineering: Systematic Development of Web Applications**
 Gerti Kappel, Birgid Pröll, Siegfried Reich, Werner Retschitzegger (eds.)
 dpunkt-verlag (German version), 2003,
 John Wiley & Sons (English version), 2006.

- **Model-Driven Generation of Web Applications in UWE**
 Andreas Kraus, Alexander Knapp and Nora Koch
 3rd International Workshop on Model-Driven Web Engineering (MDWE 2007), Como, Italy

- **Metamodelling the Requirements of Web Systems**
 María José Escalona and Nora Koch
 2nd International Conference on Web Information Systems and Technologies (WebIST’06), Setubal,

- **Modelling Adaptivity with Aspects**
 Hubert Baumeister, Alexander Knapp, Nora Koch and Gefei Zhang
 5th International Conference on Web Engineering (ICWE 2005), Sydney, Australia, LNCS 3579, 406-416, 2005.
Muchas gracias!

Nora Koch
www.pst.ifi.lmu.de/people/staff/koch
nora.koch (at) pst.ifi.lmu.de

UWE
www.pst.ifi.lmu.de/projekte/uwe
uwe (at) pst.ifi.lmu.de

MDWEnet
www.pst.ifi.lmu.de/projekte/mdwenet
mdwenet (at) pst.ifi.lmu.de