
1

����� � � � 	

 � �

� � � � � � � � �

����� � � � 	

 � �

� � � � � � � � �

UWE Metamodel and Profile
User Guide and Reference

Technical Report 0802
Programming and Software Engineering Unit (PST)
Institute for Informatics
Ludwig-Maximilians-Universität München, Germany
February 2008

UWE Metamodel and Profile - User Guide and Reference

3

The UWE Metamodel and Profile – User Guide and Reference
Version 1.0 - February 2008

Christian Kroiß and Nora Koch

Ludwig-Maximilians-Universität München (LMU), Germany
Institute for Informatics
Programming and Software Engineering (PST)
www.pst.ifi.lmu.de/projekte/uwe

This research has been partially supported by the project MAEWA “Model Driven Development of
Web Applications” (WI841/7-1) of the Deutsche Forschungsgemeinschaft (DFG), Germany and the
EC 6th Framework project SENSORIA “Software Engineering for Service-Oriented Overlay
Computers” (IST 016004).

UWE Metamodel and Profile – User Guide and Reference

4

Table of Contents

1 INTRODUCTION ... 5
2 REQUIREMENTS PACKAGE ... 6
3 CONTENT PACKAGE .. 6
4 NAVIGATION PACKAGE.. 6

4.1 CLASS DESCRIPTIONS ... 7
4.1.1 Node .. 7
4.1.2 Link.. 7
4.1.3 NavigationClass .. 8
4.1.4 NavigationProperty... 8
4.1.5 NavigationLink.. 9
4.1.6 Menu.. 9
4.1.7 AccessPrimitive ..10
4.1.8 Index...10
4.1.9 Query..11
4.1.10 GuidedTour ...11

5 PRESENTATION PACKAGE..12
5.1 CLASS DESCRIPTIONS ..13

5.1.1 PresentationElement ..13
5.1.2 PresentationClass ..13
5.1.3 PresentationProperty ...14
5.1.4 Page ...14
5.1.5 PresentationGroup...15
5.1.6 UIElement ..15
5.1.7 UIContainer ...16
5.1.8 Form...16
5.1.9 AnchoredCollection..16
5.1.10 Anchor ...16
5.1.11 Button ..17
5.1.12 Text ..17
5.1.13 Image ...17
5.1.14 TextInput..18
5.1.15 Choice..18

6 PROCESS PACKAGE...18
6.1 CLASS DESCRIPTIONS ..20

6.1.1 ProcessClass ..20
6.1.2 ProcessLink ..21
6.1.3 ProcessProperty ...21
6.1.4 UserAction ...21

7 UWE PROFILE..22
8 EXAMPLE: SIMPLE MUSIC PORTAL...24

8.1 USE CASES...24
8.2 CONTENT MODEL ..25
8.3 USER MODEL ...26
8.4 NAVIGATION MODEL ...27
8.5 BUSINESS PROCESSES ..27

8.5.1 Process Login...29
8.5.2 Process Logout...30
8.5.3 Process BuyAlbum ...30
8.5.4 Process Register...31
8.5.5 Process Recharge...32

8.6 PRESENTATION MODEL ...33

UWE Metamodel and Profile – User Guide and Reference

5

REFERENCES...35

1 Introduction
Web modelling approaches are driven by the separation of concerns describing a web system,
such as content, hypertext structure, presentation, and processes. The UML-based Web
Engineering (UWE) approach provides a set of web domain-specific model elements for
modelling these different concerns. These model elements and the relationships between them
are specified by a metamodel.

The UWE metamodel is defined as a conservative extension of the UML 2.0 metamodel.
Conservative means that the model elements of the UML metamodel are not modified.
Instead, all new model elements of the UWE metamodel are related by inheritance to at least
one model element of the UML metamodel. We define additional features and relationships
for these new elements. Analogous to the well-formedness rules in the UML specification, we
use OCL constraints to specify the additional static semantics of these new elements.

The resulting UWE metamodel is profileable, which means that it is possible to map the
metamodel to a UML profile [1]. In particular, UWE stays MOF-compatible, i.e. UWE is
compatible with the MOF interchange metamodel and therefore with tools that are based on
the corresponding XML interchange format XMI. The advantage is that all standard UML
CASE tools, which support UML profiles or UML extension mechanisms can be used to
create UWE models of, web applications. If technically possible, these CASE tools can
further be extended to support the UWE method, i.e. steps of automatic generation of models.
ArgoUWE and MagicDraw present instances of such CASE tool support for UWE based on
the UWE metamodel.

The UWE extension of the UML metamodel consists of adding two top-level packages Core
and Adaptivity to the UML (see Figure 1). The separation of concerns of web applications is
reflected by the package structure of Core, the crosscutting of adaptation by the dependency
of Adaptivity on Core.

Core

Requirements

Content Presentation

Process

Navigation Adaptivity

Figure 1: Overview of the UWE Metamodel

UWE Metamodel and Profile – User Guide and Reference

6

2 Requirements Package
The package Requirements comprises the UWE extensions on use case models for discerning
navigational from business process and personalized use cases and the extensions for activity
diagrams. Further details on these elements will be provided in the next version of this report.

3 Content Package
Content modelling for web applications within UWE does not differ from content modelling
for non-web software. Therefore, we use standard UML model elements for structure
modelling as classes, associations and packages. In addition, behavioural modelling can make
use of UML features such as state machines and sequence diagrams.

Customized web applications require the modelling of user or environment features. A user
profile or user model can be used to represent these features separating user profiling from
content modelling.

4 Navigation Package
The UWE navigation metamodel is represented in

Figure 2. The backbone of the navigation metamodel is the pair of abstract metaclasses Node
and Link and the associations between these classes. A set of subclasses of Node and Link
provide the web domain specific metaclasses for building the navigation model:
NavigationClass and ProcessClass with the related Navigation Link and ProcessLink as well
as Menu and the access primitives Index, GuidedTour and Query.

NavigationProperty

-selectionExpression : String [0..1]

Query

-filterExpression : String [0..1]

GuidedTour

-sortExpression : String [0..1]

NavigationClass

Node

-isLandmark : Boolean
-isHome : Boolean

Link

-isAutomatic : Boolean

AccessPrimitive

ProcessClass
(Process)

NavigationLinkProcessLink
(Process)

Index

Menu

-outLinks
*

-source
1

-inLinks

*

-target

1..*

-accessedAttributes

*
*

{subsets target}
1..* {subsets inLinks}

*

-menus

* 0..1

{subsets ownedAttribute}*

1

Figure 2: The Navigation Package

UWE Metamodel and Profile – User Guide and Reference

7

The relationship between model elements of the Navigation package and UML classes used to
model the content of a web application is shown in Figure 3.

Node

-isLandmark : Boolean
-isHome : Boolean

NavigationProperty

-selectionExpression : String [0..1]

NavigationClass

Class
(UML)

UWEModel

Link

NavigationModel

Association
(UML)

Property
(UML)

-contentClass

0..1 *

-contentProperty

0..1 *

{subsets ownedAttribute}*

1

-ownedAttribute*

0..1

Figure 3: Relationship of the Navigation Package to the UML

4.1 Class Descriptions

4.1.1 Node
Abstractly spoken, a node can be any kind of node in a navigation graph. This generally
means that when the node is reached during navigation, the user is provided with some
information and is optionally offered the possibility to carry out one or more actions.
A node does not necessarily represent a page of the web application, although it may do so.
What is shown on a page is defined in the presentation model (see section 5).

Generalizations
• Class (from UML)

Attributes
• isLandmark : Boolean Specifies whether the node is a landmark, which

means that it is reachable from every other node of
the navigation graph.

• isHome : Boolean If this attribute is set to true, the node becomes the
origin of the navigation graph.

Associations
• inLinks : Link [*] The collection of links that lead to the node.
• outLinks : Link [*] The collection of links that originate from the node.

4.1.2 Link
A link is an edge of the navigation graph and therefore connects two nodes. Note remember
that just as a node does not always represent a page, a link does not have to represent a page
transition that is triggered by a user action. As mentioned in section 5, the presentation model
defines whether the information of two nodes that are connected by a link is shown at the

UWE Metamodel and Profile – User Guide and Reference

8

same time or if the user has to click on an anchor to navigate from one node to the other (see
section 5 for more information).

 Generalizations
• Association (from UML)

Attributes
• isAutomatic : Boolean This attribute allows specifying explicitly that no

decision by the user is required for following the
link.

Associations
• source : Node [1] The origin node of the link.
• target : Node [1..*] The target node(s) of the link. Multiple target nodes

are used for adaptivity, which is not described in
this version of the document.

4.1.3 NavigationClass
A navigation class represents a navigable node of the hypertext structure and establish the
connection between the navigation model and the content model. A navigation class that is
associated with a class from the content model is meant to represent the content of one
instance of that class.

Generalizations
• Node on page 7.

Attributes
No additional attributes.

Associations
• contentClass : Class [0..1] The class of the content model that specifies the

content of the navigation class.
• menus : Menu [*] The collection of all menus that are directly

reachable from the navigation class, i.e. menus that
are targets of navigation links that originate from
the navigation class.

• navigationProperty :
NavigationProperty [*]
{subsets ownedAttribute}

 The collection of navigation properties that define
the contents of the navigation class.

4.1.4 NavigationProperty
The attributes of a navigation class are called navigation properties. They define the content
of UI elements. The value of a navigation property is either directly taken from an associated
property of a content class or derived using a selection expression. At the moment, UWE does
not specify any special syntax or semantics or which languages can be used for the selection
expression.

UWE Metamodel and Profile – User Guide and Reference

9

It is common practice in navigation diagrams to leave out navigation properties that are
connected to properties of the content class. Although, they can also be specified explicitly to
point out what information is relevant. If a navigation class has no navigation properties at all,
then each property of the content class is implicitly mirrored by a “virtual” navigation
property with the same name.

Generalizations
• Property (from UML)

Attributes
• selectionExpression :

String [0..1]
 An expression that has the same type as the

navigation property and that is used to derive a
value from the currently available set of content
class instances. The context of the expression (self
in OCL) is the content class that is associated with
the navigation class.

Associations
• contentProperty : Property

[0..1]
 A property whose value is mirrored in the

navigation property. Typically, this is an attribute
of the content class that is associated with the
navigation class (like Album::name in Figure 8).
In any case, the instance of the class that contains
the content property must be identifiable clearly
when the navigation class is reached.

4.1.5 NavigationLink
A navigation link is a link that connects any kind of nodes except process classes. If either
source or target of a link is a process class then a process link is used (see section 6.1.2).

Generalizations
• Link on page 7.

Attributes
No additional attributes.

Associations
No additional associations.

4.1.6 Menu
A menu is used to handle alternative navigation paths. Note that a menu in the navigation
model is not always rendered as a menu in the sense of user interfaces. This is because two
nodes that are connected through a menu could be defined to be rendered simultaneously in
the presentation model (see section 5). In this case, the user does not have to do anything in
order to follow the navigation path, which would be the essential behaviour for a menu in any
user interface.

Generalizations
• Link on page 7.

UWE Metamodel and Profile – User Guide and Reference

10

Attributes
No additional attributes.

Associations
• navigationClass :

NavigationClass [0..1]
 The navigation class that is the origin of all

navigation paths through the menu.

4.1.7 AccessPrimitive
Access primitives are used to select the instances of content classes that make up the content
of navigation classes.

Generalizations
• Node on page 7.

Attributes
No additional attributes.

Associations
• accessedAttributes :

NavigationProperty [*]
 A collection of navigation properties that are used

to select the content class instance.

4.1.8 Index
An index allows selecting one content class instance from a set of instances that has been
compiled during previous navigation. This means that a set of content class instances is taken
from the context of the predecessor in the navigation path and the user is allowed to choose
one of them. The chosen instance then becomes the content object for the navigation class that
succeeds the index in the navigation path.
The input set of content class instances is determined by the incoming navigation link. There
are three different cases:

1. The predecessor is a query. In this case, the set of instances is just the result of the
query, e.g. all books published in December 2007.

2. The predecessor is a navigation class. The set of instances is then taken from a
collection property of the corresponding content class. To specify which property is
used, the target role name of the navigation link can be set equal to the property’s
name.

3. The predecessor is a menu. In this case, the context of the menu’s preceding
navigation class is used just as if it is connected directly and the rules described in 2
apply. In the Music Portal example at the end of the document, this constellation is
shown in Figure 10 on page 27. The link from UserMenu to UserAlbumIndex has
one navigable role named ownedAlbums. This means that the input collection of
albums for UserAlbumIndex is taken from the role ownedAlbums of the User
class from the user model (see section 8.3).

Generalizations
• AccessPrimitive on page 10.

Attributes
No additional attributes.

UWE Metamodel and Profile – User Guide and Reference

11

Associations
No additional associations.

4.1.9 Query
A query is used to retrieve content from a data source. Unlike an index, a query does not get
its set of content class instances from a predecessor of the navigation path, but rather from a
database or any other kind of data source that supports queries. A query may require search
parameters, like e.g. for searching movies by title. In this case, the presentation model must
contain elements that provide a user interface for filling in values for the parameters (see
section 5). The semantics of a query can be specified as follows the attribute
filterExpression of Query, which can hold an expression that describes the query and
which involves the accessedAttributes (see Figure 10).
If the query does not require parameters, it is executed automatically when it is reached in the
navigation graph. An example would be a query that retrieves the current top 10 movies from
the movie database.

Generalizations
• AccessPrimitive on page 10.

Attributes
• filterExpression : String

[0..1]
 An expression that describes the semantics of the

query.

Associations
No additional associations.

4.1.10 GuidedTour
A guided tour provides sequential process to instances of a navigation class. It is given an
ordered set of content class instances as input and has an outgoing navigation link to a
navigation class. The user is allowed to browse back and forth through the input collection
selecting one instance at a time as content for the target navigation class. The order in which
the instances are visited is specified using a filter expression.

Generalizations
• AccessPrimitive on page 10.

Attributes

• filterExpression : String
[0..1]

 An expression that is used to calculate the order in
which the navigation class instances are visited.

Associations
No additional associations.

UWE Metamodel and Profile – User Guide and Reference

12

5 Presentation Package
The presentation model provides an abstract view on the user interface (UI) of a web
application. It is based on the navigation model. The presentation model abstracts from
concrete aspects of the UI, like the use of colours, fonts, and where the UI elements are placed
on the web page; instead, the presentation model describes the basic structure of the user
interface, i.e., which UI elements (e.g. text, images, anchors, forms) are used to present the
navigation nodes (see Figure 4 and Figure 5). Also, the UI elements do not represent concrete
components of any presentation technology but rather describe what functionality is required
at that particular point in the user interface. This could simply mean that a text or image has to
be displayed or for example that the user should be enabled to trigger a transition in the
navigation model. In the last case, it is clear that an Anchor would be used in the UWE
presentation model, but UWE does not define how the anchor should be rendered in the final
web application. This could of course be just an anchor element of HTML (<a>), but also a
button or even an embedded flash applet could serve the purpose.

The basic elements of a presentation model are the presentation classes, which are directly
based on nodes from the navigation model, i.e. navigation classes, menus, access primitives,
and process classes. Presentation classes can contain other presentation elements. This is
accomplished through presentation properties that use the included presentation elements as
type. In the case of UI elements, like text or image, the presentation property is associated
with a navigation property that contains the content to be rendered.

The inclusion of presentation classes into other presentation classes or pages leads to a tree
of presentation classes that are shown together. This means that the links between their
corresponding navigation nodes are effectively “followed automatically”. On the other hand,
if two presentation classes do not belong to the same inclusion tree, then the link between
their navigation nodes has to be triggered by user action.

In contrast to presentation classes and pages, a presentation group defines a set of
presentation classes that are shown alternatively, depending on navigation. In the sense of the
description above, a presentation group creates a set of alternative inclusion trees.

NavigationProperty
(Navigation)

-selectionExpression : String [0..1]

PresentationGroup

PresentationElement

PresentationProperty

PresentationClassNode
(Navigation)

-isLandmark : Boolean
-isHome : Boolean

Class
(UML)

Property
(UML)

UIElement

Page

1

*

-ownedAttribute*

-class 0..1

{subsets ownedAttribute}

*

1

-node

0..1

*

-navigationProperty

0..1 *

-default 0..1

Figure 4: The Backbone of the Presentation Package

UWE Metamodel and Profile – User Guide and Reference

13

UIElement

PresentationElement PresentationProperty

PresentationClass

AnchoredCollection

Choice

-multiple : Boolean

Button

Link

Form

TextInputImageTextUIContainer Anchor

-elements
*

0..1

{subsets elements}

-anchors

1..*

1
*

{subsets ownedAttribute}*

1

-link 0..1

Figure 5: Presentation Elements

5.1 Class Descriptions

5.1.1 PresentationElement
PresentationElement is the abstract super class of all model elements of the presentation
package.

Generalizations
• Class (from UML)

Attributes
No additional attributes.

Associations
No additional associations.

5.1.2 PresentationClass
A presentation class defines the combination of presentation elements that show the contents
of a navigation node. If the associated navigation node is reached, the complete composed
content of the corresponding inclusion tree is shown.

Generalizations
• PresentationElement on page 13.

Attributes
No additional attributes.

Associations
• node : Node [0..1] The navigation node that is rendered by the

UWE Metamodel and Profile – User Guide and Reference

14

presentation class.
• presentationProperty :

PresentationProperty [*]
{subsets ownedAttribute}

 The collection of presentation properties that
constitute the content of the presentation class.

5.1.3 PresentationProperty
Presentation properties are used to define the content of presentation classes. The
presentation element that should be included is used as the type of the presentation property.
If the contained element is an UI element (like text, image, text input, etc.) then the
presentation property can be associated with a navigation or process property that defines the
location of data to be presented or edited.

If the property has a multiplicity higher than one, it means that the contained element is
rendered repeatedly by iteration over a source collection of values. This collection is given
implicitly when the presentation property represents the anchors of an index. Otherwise, the
associated navigation or process property must have a multiplicity higher than one, too.

Generalizations
• Property (from UML)

Attributes
No additional attributes.

Associations
• presentationElement :

PresentationElement [1]
{subsets type}

 The presentation element that should be included
inside the presentation class that owns the
presentation property.

• navigationProperty :
NavigationProperty [0..1]

 The navigation or process property that defines the
location of data that is presented or edited by the
included presentation element.

5.1.4 Page
A page has the same semantics as a presentation class, with the exception that it may not be
included inside another presentation class. This means that a page always defines the root of
an inclusion tree of presentation classes. Unlike a presentation class, a page does not have to
be associated with a navigation node, as long as it includes at least one presentation class that
provides the reference to the navigation model.

Generalizations
• PresentationClass on page 13.

Attributes
No additional attributes.

Associations
No additional associations.

UWE Metamodel and Profile – User Guide and Reference

15

5.1.5 PresentationGroup
A presentation group is used to define a set of presentation classes whose contents are shown
alternatively on the same area of the page, depending on navigation. If a navigation node is
reached that is associated with one of the alternatives, the content of this presentation class
replaces the content of the presentation class that is shown at that moment. One of the
presentation classes can be defined as the default, which is selected if none of the associated
navigation nodes has been reached yet.

The inclusion of alternatives works just like the inclusion of presentation elements in normal
presentation classes, so each alternative presentation class is used as the type of a presentation
property that is owned by the presentation group.

Generalizations
• PresentationClass on page 13

Attributes
No additional attributes.

Associations
• default :

PresentationProperty
[0..1]

 Defines which presentation class is used as the
default when none of the alternatives’ associated
navigation nodes has been reached yet.

5.1.6 UIElement
UIElement is the abstract super class for presentation elements that are responsible for
presenting or editing content. Every UIElement has to be included in a presentation class that
is associated with a navigation node. The subclasses of UIElement can be divided into four
groups:

• UI containers like forms can contain other UI elements.
• Static elements, such as Image or Text, are used to display content. They can be

connected with a navigation property to specify where the displayed data is retrieved
from, as described in section 5.1.3. Alternatively, they can be used to provide values
for query parameters.

• Elements that handle user input like TextInput or Choice. They can be connected with
a navigation- or process property in order to specify how the user input is handled.

• Anchor and Button both trigger transitions on the navigation model or process model.

It is important to remember that the UWE presentation model does not specify concretely how
an UI element is rendered in terms of which element of the used presentation technology is
used. For example, a UWE choice that allows selection of one element could be rendered by
an HTML <select> element as well as by a group of radio buttons.

Generalizations
• PresentationElement on page 13

Attributes
No additional attributes.

UWE Metamodel and Profile – User Guide and Reference

16

Associations
• uiContainer : UIContainer

[0..1]
 The UIContainer that contains the UIElement.

5.1.7 UIContainer
A UIContainer is an abstract super class not linked to any data by itself but can include other
UI elements.

Generalizations
• UIElement on page 15

Attributes
No additional attributes.

Associations
• elements : UIElement [*] The contained UI elements.

5.1.8 Form
A form groups user interface elements that are used to provide data for a process.

Generalizations
• UIContainer on page 16

Attributes
No additional attributes.

Associations
No additional associations.

5.1.9 AnchoredCollection
An anchored collection is an UI container that can only contain anchors. It can be used to
model the presentation of a menu or an index.

Generalizations
• UIContainer on page 16

Attributes
No additional attributes.

Associations
• anchors : Anchor [1..*] The anchors contained by the anchored collection.

5.1.10 Anchor
An anchor allows the user to trigger a transition in the navigation model alongside a specified
link. Note that the UWE presentation model does not specify how an anchor is rendered. In
HTML, for example, both an anchor element (<a>) as well as a button may be used.

UWE Metamodel and Profile – User Guide and Reference

17

 Generalizations
• UIElement on page 15

Attributes
No additional attributes

Associations
• link : Link [0..1] The link that is followed when the anchor is

clicked.

5.1.11 Button
A button in general is an element that enables the user to initiate some action of the web
application. The most common usage is in conjunction with input elements to submit data and
execute a query or a process. Just like mentioned in section 5.1.10, UWE does not specify
how a button is rendered. If HTML is used as presentation technology, an <input> element
with type “button” could be used as well as an <a> element or even an image, (given that
JavaScript is enabled).

Generalizations
• UIElement on page 15

Attributes
No additional attributes

Associations
No additional associations.

5.1.12 Text
A text element is used to displays static text. The content can be provided by a navigation
property as described in section 5.1.3.

Generalizations
• UIElement on page 15

Attributes
No additional attributes

Associations
No additional associations.

5.1.13 Image
An image element is used to display a static image. The content provided by the
corresponding navigation property (see section 5.1.3) could be interpreted as an URL
specifying the location of an image file or directly as image data in any format.

UWE Metamodel and Profile – User Guide and Reference

18

 Generalizations
• UIElement on page 15

Attributes
No additional attributes

Associations
No additional associations.

5.1.14 TextInput
A text input element allows the user to enter text.

Generalizations
• UIElement on page 15

Attributes
No additional attributes

Associations
No additional associations.

5.1.15 Choice
A choice allows selecting one or more values from a set of possibilities. In a web application,
there are several different ways how this functionality could be realized by concrete HTML
elements, e.g.:

• By a <select> element
• By a group of radio buttons to select one value out of several values
• By a group of checkboxes to select multiple values
• By one checkbox if the edited property is of type Boolean

Generalizations
• UIElement on page 15

Attributes
• multiple : Boolean

(default = false)
 Defines whether the choice allows selecting more

than one value.

Associations
No additional associations.

6 Process Package
The process package provides model elements for integrating business processes into an
UWE web application model. This can be separated into three tasks:

UWE Metamodel and Profile – User Guide and Reference

19

• Integration of business processes into the navigation model

This is enabled by the two metaclasses ProcessClass and ProcessLink that extend
Node and Link respectively and that allow defining how a process can be reached
through navigation and how navigation will continue after the process.

• Definition of a user interface to support the processes
Processes most likely require a user interface for data input and presentation. This user
interface can be defined with the UWE presentation model for each process class just
like the UI for navigation classes as described in section 5. However, user input may
be required at several points in the process flow. This is solved by creating one process
class for each step and associating them with the main process class that is integrated
in the navigation model. For each of these process classes, a presentation class will be
created defining the user interface. The UI elements are connected with process
properties of the corresponding process class.

• Definition of the behaviour
The behaviour of a process is defined by an UML activity that is owned by the main
process class. The following restrictions and special semantics apply:

o A special UserAction is used to mark a point in the control flow when the user
is asked to enter data. The user action is associated with a process class to
identify what data is edited and what presentation class is shown. The control
flow of the activity continues after the user has submitted the requested data.
Each process property of the process class provides entered data from the
corresponding UI element through an output pin of the user action that has the
same name as the process property. Similarly, the process properties of a
process class can be set with input pins of the corresponding user action.
These values are used as initial values for the connected UI elements.

o In many cases, a process needs some input from its predecessor node in the

navigation graph. For example, an EditContact process would need an
instance of the content class Contact as input. This instance could be
provided by a navigation class Contact from which the user, over a menu,
can chooses to edit the particular contact. This situation can be modelled by an
activity parameter node that is used instead of an initial action node. The
parameter node must have the same type as the content class of the navigation
class that precedes the process class.

o The actions in the process activity that are not user actions may call operations

of the input parameter object and on every instance that is created during the
process activity. How access to other contexts is expressed is up to the
modeller.

o The process could create or select a content class instance that should be

passed to a succeeding node (navigation class or process class). This can be
modelled by an activity parameter node that is used instead of an activity final
node.

o Other processes can be embedded by calling the corresponding process activity

using UML CallBehaviorActions.

UWE Metamodel and Profile – User Guide and Reference

20

The model elements presented above and the relationships between them are shown in
Figure 6. These model elements are described in the following subsections.

ProcessProperty

-rangeExpression : String [0..1]

Link
(Navigation)

-isAutomatic : Boolean

Node
(Navigation)

-isLandmark : Boolean
-isHome : Boolean

NavigationProperty
(Navigation)

ProcessLinkProcessClass

Property
(UML)

Class
(UML)

CallAction
(UML)

Activity
(UML)

UserAction

-ownedAttribute*

-class 0..1

-processActivity

0..1

0..1

{subsets target}

-processClass
1..* {subsets inLinks}

*

-inLinks

*

-target
1..*

-outLinks

*

-source

1

{subsets ownedAttribute}*

1
1

0..1

Figure 6: The Process Package

6.1 Class Descriptions

6.1.1 ProcessClass
Process classes are used to integrate business processes into the navigation model and to
define the data that is exchanged with the user during the process.

In the navigation model, process classes can be connected to other navigation nodes using
process links. This defines how a process can be reached through navigation. If a process
involves several steps with different user interfaces, each step has to be backed up by a
process class that is associated with a user action (see section 6.1.4). The user interface of
each step is defined by a presentation class that is associated with the process class using the
“node” role. However, only one class is integrated in the navigation model. This class
becomes the “main process class” and has to be associated with the activity that defines the
process flow.

The properties of process classes (process properties) are each connected with a UI element
and provide means to define how data retrieved from the user interface is used within the
process (see sections 6.1.3 and 6.1.4).

Generalizations
• Node on page 7

Attributes
No additional attributes

UWE Metamodel and Profile – User Guide and Reference

21

Associations
• processActivity : Activity

[0..1]
 The UML activity that defines the process flow.

This is only used for the main process class of a
business process (the one that’s used as a node in
the navigation model). As an abbreviation, the
activity can be encapsulated in the process class
using the ownedBehavior feature.

• processProperty :
ProcessProperty [*]
{subsets ownedAttribute}

 A collection of properties that are each connected
to a UI element and are used to define how input
from these UI elements is handled by the process.

6.1.2 ProcessLink
Process links are used to connect process classes to other navigation nodes.

Generalizations
• Link on page 7

Attributes
No additional attributes.

Associations
• processClass :

ProcessClass [1..*]
 The target node(s) of the process link.

6.1.3 ProcessProperty
A process property is owned by a process and is used to define how data retrieved from a UI
element is used within the process flow. The relation to the UI element is established by the
feature navigationProperty of PresentationProperty (see section 5.1.3).

Generalizations
• NavigationProperty on page 8

Attributes
• rangeExpression : String

[0..1]
 An expression that can be used to define a range of

possible values for input into the related UI
element.

Associations
No additional associations.

6.1.4 UserAction
A user action defines a point in the process flow when the user is asked to input data. It is
associated to a process class that in turn is referenced by a presentation class. When the user
action is reached in the control flow of the process activity, the UI elements of the
corresponding presentation class are shown. After the user has submitted data, the process
flow is continued. The data that has been entered in the user interface elements is available via

UWE Metamodel and Profile – User Guide and Reference

22

output pins of the user action that are named equal to the process properties that back up the
UI elements (see section 6.1.3). Analogically, input pins can be used to define that data from
the activity’s object flow should be displayed by the corresponding UI elements.

Generalizations
• CallAction (from UML)

Attributes
No additional attributes.

Associations
• processClass :

ProcessClass [1]
 A process class that is referenced by a presentation

class and that provides process properties that are
on their part referenced by UI elements.

7 UWE Profile
The UWE metamodel is mapped to a UML profile. The definition of a UML profile has the
advantage that it is supported by nearly every UML CASE tool. The semantics of the
stereotypes corresponds to the elements of the same name in the metamodel.

UWE stereotype UML base class Used in Icon

«anchor» class presentation model
«anchored collection» class presentation model
«button» class presentation model
«choice» class presentation model

«form» class presentation model

«guided tour» class navigation model
«image» class presentation model
«index» class navigation model
«menu» class navigation model

«navigation class» class navigation model

«navigation link» association navigation model

«navigation property» property navigation model

«page» class presentation model

«presentation class» class presentation model

«presentation group» class presentation model

UWE Metamodel and Profile – User Guide and Reference

23

UWE stereotype UML base class Used in Icon

«presentation property» property presentation model

«process class» class navigation/process model
«process link» association navigation model

«process property» property navigation/process model

«query» class navigation model

«text input» class presentation model
«text» class presentation model

«user action» action process model

Table 1: UWE Stereotypes

UWE Metamodel and Profile - User Guide and Reference

24

8 Example: Simple Music Portal
The following example is meant to illustrate as many of the issues discussed in this document
as possible. It models a very simple music portal web application that allows users to buy
albums which then can be downloaded as archive files containing MP3s. The objective of the
simplified example is to show how to use all UWE model elements when building models of
web applications. The following list gives a short informal description of the use cases and
requirements.

• A distinction is made between users and registered users. Only registered users can
buy or download albums. A user becomes a registered user by logging in.
Unregistered users can register with a username that has not been taken by another
user and a freely chosen password.

• Every user can search for albums by their name. Other search methods are not offered.
The search result is presented as a list of matching albums that provides links to a
detail page for each album. The album detail pages show the title of the album, the
name of the artist, the list of songs and the album’s price. If the user has already
bought the album then a download link is shown. Otherwise, there will be a link for
buying the album.

• Only full albums can be downloaded.
• In this simplified example, each album has only one artist. This restriction is done to

reduce the complexity of the navigation and presentation models. It would be easy
though to add support for multiple artists by adding an index in the navigation model
and an anchored collection in the presentation model, respectively.

• Each registered user has a credit account that is used to buy albums. The credit
account can be recharged by credit card payment. To do this the user has to enter her
credit card data and the amount to recharge with. This data is validated and the user
has to confirm the transaction before the credit card is charged and the user’s credit
account is recharged. The details of credit card handling are not modelled in this
example.

• If a user is logged in, she can navigate to an account page that shows the user’s credits
and the list of albums she has bought in the past.

• The links for logging in or out, for registering and to the user’s account page are
always shown. This also holds for the album search box.

The example uses a shorthand notation that omits tagged values and uses name-matching to
establish the relationship between model elements. For example, the navigation class
“Album” should actually have a tagged value “contentClass=content::Album”, but as the
names for content and navigation class are equal, the tagged value can be left out. The same
pattern is used for the connections between presentation classes and navigation nodes and
between presentation and navigation properties. Also, the stereotype «navigationLink» is
not shown.

8.1 Use Cases
Figure 7 shows the use case model of the music portal Web application. Two actors are
triggering the use cases: the (anonymous) user and the registered user. The web application
supports non-transaction-based functionality, such as searching and viewing of albums and
songs as well as transactional functionality, such as recharging and downloading an album.

UWE Metamodel and Profile – User Guide and Reference

25

MusicPortal

ViewOwnedAlbumList

ViewAlbumDetails

DownloadAlbum

SearchAlbum

ViewAccount

Login

Recharge

BuyAlbum

Register

Logout

RegisteredUser

User

<<extend>>
<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

Figure 7: Music Portal Use Cases

8.2 Content Model
The content model visualizes the domain relevant information for the Web system that mainly
comprises the content of the Web application. In our example the information is provided by
the classes Album,Artist and Song. A UML class diagram and UML plain classes are
used to model the content.

Album

-name : String
-price : float
-downloadLink : String
-description : String
-cover : String

Song

-name : String
-length : String

Artist

-name : String
* 1

1..*

1

Figure 8: Music Portal Content Model

UWE Metamodel and Profile – User Guide and Reference

26

8.3 User Model
The separation in user model and content model is a decision that is up to the modeller. Only
plain UML elements are used as no additional semantics applies. While the content model
defines the data content of the application, the user model serves two different purposes. On
the one hand, it contains classes that define what information is stored in the context of a
session. In this example, we see that a session can have one current user who can have a
collection of owned albums. On the other hand, the classes in the user model provide
operations that can be used in the business processes. The behaviour of these operations is not
modelled but has to be implemented separately. For example, the operation
CreditCard::charge() will probably be realised by calling a third party library or web
service. For some of the other methods, the behaviour is described using OCL. This is just
one possible method though, as UWE does not specify how to define operation behaviour.
 []

CreditCard

-owner : String
-number : String
-validThrough : String
-controlNumber : String

<<constructor>>+CreditCard(owner : String, number : String, validThrough : String, controlNumber : String)
+validate() : Boolean
+charge(amount : float) : Boolean

User

-name : String
-password : String
-credits : float

<<constructor>>+User(name : String, password : String)
+buyAlbum(album : Album)
+recharge(amount : float)
+save()
+checkPassword(password : String) : Boolean{query}
+validateRegistrationData() : String{query}
+loadUser(name : String) : User{query}
+getCredits() : float{query}

Session

+setCurrentUser(user : User)
+logout()
+getCurrentUser() : User

Album
(content)

-name : String
-price : float
-downloadLink : String
-description : String
-cover : String

context User::buyAlbum(album : Album)

pre: not self.ownedAlbums->includes(album) and self.credits >= album.price
post: self.ownedAlbums = self.ownedAlbums@pre->including(album)
and self.credits = self.credits@pre - album.price

context User::validateRegistrationData() : String body:
let users : Sequence(User) = User::allInstances()->select(u | u.name =
self.name) in if users->isEmpty() then 'OK' else 'Username not available.'
endif

context User::loadUser(name : String) : User
body:
let users : Sequence(User) = User::allInstances()->select(u |
u.name = name)
in if users->isEmpty() then null else users->first() endif

context User::recharge(amount : float)
pre: amount > 0
post: self.credits = self.credits@pre + amount

context Session::logout()
post: self.currentUser = null

-currentUser 0..1

-ownedAlbums *

Figure 9: Music Portal User Model

UWE Metamodel and Profile – User Guide and Reference

27

8.4 Navigation Model
The navigation model of the example is designed as described in section 4. The navigation is
strongly simplified and is mainly intended to demonstrate the use of the model elements than
to show a realistic example.
As mentioned above, the stereotype «navigationLink» is not shown on associations to
make the diagram more readable. Also the content classes of the navigation classes are not
specified explicitly but are rather derived by name matching with classes from the content
model. Only the one navigation attribute that needs a selection expression is defined explicitly
(Album::artistName). The others are derived implicitly from the properties of the content
classes.

<<navigationClass>>
Album

<<navigationProperty>>-name : String
<<navigationProperty>>-artistName : String

<<navigationClass>>
Song

<<navigationClass>>
Home

{isHome}

<<navigationClass>>
User

<<menu>>
MainMenu

{isLandmark}

<<index>>
UserAlbumIndex

<<processClass>>
Recharge

<<processClass>>
Logout

<<processClass>>
BuyAlbum

<<processClass>>
Login

<<processClass>>
Register

<<query>>
AlbumQuery

<<menu>>
AlbumMenu

<<index>>
AlbumIndex

<<index>>
SongIndex

<<menu>>
UserMenu

<<navigationProperty>>

selectionExpression = "self.artist.name"

<<accessPrimitive>>

accessedAttributes = "Album::name"

There's no outgoing link
because these process
classes can be reached from
everywhere. After the
processes have finished,
navigation goes back to the
node that has been reached at
 last.

<<processLink>>

<<processLink>>

<<processLink>>

<<processLink>>

<<processLink>>

<<processLink>>

<<processLink>>
*

-ownedAlbums

*

-songs

Figure 10: Music Portal Navigation Model

8.5 Business Processes
The example’s process model consists of the process classes that are integrated in the
navigation model, additional process classes to handle user input and activities that define the
behaviour of the processes (see section 6). The process model of Figure 11 shows the
relationship of main process class and process classes, which have associated the process
flow.

UWE Metamodel and Profile – User Guide and Reference

28

<<processClass>>
InsufficientCreditsMessage

-message : String

<<processClass>>
RechargeConfirmationInput

-creditCard : CreditCard
-amount : float

<<processClass>>
BuyAlbumConfirmation

-message : String

<<processClass>>
Login

-userName : String
-password : String
-errorMessage : String

+setLoginError()

<<processClass>>
RechargeDataInput

-amount : float
-currentCredits : float
-errorMessage : String
-owner : String
-controlNumber : String
-validThrough : String
-creditCardNumber : String

-errorMessage : String
-userName : String
-password : String

<<processClass>>
Register

<<processClass>>
BuyAlbum

<<processClass>>
Recharge

CONTEXT Login::setLoginError()
POST:
self.errorMessage = 'Login Error'

Figure 11: Music Portal Structural Process Model

The workflows modelling the behaviour of the process classes Login, Register, BuyAlbum
and Recharge are shown in Figure 12 to Figure 16.

UWE Metamodel and Profile – User Guide and Reference

29

8.5.1 Process Login

activity Login Login[]

process.Login.setLoginError()

Session.setCurrentUser()
target

user

User.checkPassword()

target password

passwordOK : Boolean

session : Session

User.loadUser()

name

<<userAction>>
Login

userName

password

user : User

This Java-like notation for the names of Call
Operation Actions has been chosen arbitrarily in
this example to clarify which operations are
called. UWE does not define any special
semantics here.

 [passwordOK = false]

 [user = null]

 [user <> null]

 [passwordOK = true]

Figure 12: UML Activity Diagram for the Process Login

UWE Metamodel and Profile – User Guide and Reference

30

8.5.2 Process Logout

activity Logout Logout[]

sesion : SessionSession.logout()

target

Figure 13 UML Activity Diagram for the Process Logout

8.5.3 Process BuyAlbum

(album : Album) BuyAlbum BuyAlbumactivity []

<<userAction>>
InsufficientCreditsMessage

Session.getCurrentUser()

target

<<userAction>>
BuyAlbumConfirmation

User.buyAlbum()
album

target

session : Session

album : Album

 : Recharge

user : User

CANCEL

ERROR

OK

 [user = null]

 [RECHARGE]

 [CANCEL]

 [user.credits < album.price]

 [CANCEL]

 [user.credits >= album.price]

 [OK]

 [user <> null]

Figure 14: UML Activity Diagram for the Process BuyAlbum

UWE Metamodel and Profile – User Guide and Reference

31

8.5.4 Process Register

activity Register Register[]

User.validateRegistrationData()

validationResult

target

Session.setCurrentUser()
user

target

User.User()
name password

session : Session

<<userAction>>
Register

userName password

errorMessage

User.save()
target

user : User

constructor

 [validationResult = 'OK']

 [validationResult <> 'OK']

Figure 15: UML Activity Diagram for the Process Register

UWE Metamodel and Profile – User Guide and Reference

32

8.5.5 Process Recharge

Recharge Rechargeactivity []

<<userAction>>
RechargeDataInput

currentCredits
creditCardNumber

owner

validThrough

controlNumber

CreditCard.CreditCard()

controlNumber

number

owner

validThrough

<<userAction>>
RechargeConfirmationInput

amount

Session.getCurrentUser()

target

creditCardValid : Boolean

creditCard : CreditCard

CreditCard.validate()
target

CreditCard.charge()
targetamount

session : Session

User.getCredits()
target

credits

User.recharge()

target

amount

amount : float

user : User

ERROR

CANCEL

OK

constructor

 [creditCardValid = false]

 [CANCEL]

 [user = null]

 [user <> null]

 [OK]

 [creditCardValid = true]

Figure 16: UML Activity Diagram for the Process Recharge

UWE Metamodel and Profile - User Guide and Reference

33

8.6 Presentation Model
The presentation model of the example is shown as a UML composite structure diagram. In
this kind of diagram, properties that are contained by composition are shown as rectangles
that are contained in the figure of the containing class. For example the presentation class
MainMenu could be shown in the following two equivalent ways:

<<anchor>>
 : Login

<<anchor>>
 : Logout

<<anchor>>
 : Register

<<anchor>>
 : User

<<presentationClass>>
 : MainMenu

<<presentationPage>>
MusicLibrary

<<presentationClass>>
MainMenu

<<presentationPage>>
MusicLibrary

<<anchor>>
Logout

<<anchor>>
Register

<<anchor>>
User

<<anchor>>
Login

Note: The contained figures represent properties not instances.

The shorthand notation described above, with name matching instead of tagged values, is
used intensively for presentation model diagrams:

• The navigation nodes of presentation classes are chosen by name.
• UI elements are implicitly connected with equally named navigation properties (e.g.

the «text» element title in the «presentationClass» Book). Note that as described
in section 4.1.4, the navigation properties could be derived implicitly from the content
model as well.

• The link that is followed when an anchor is clicked is determined by matching the
anchors name with target role names of links that originate from the navigation node
that is connected to the presentation class that contains the anchor. If there’s only one
link to a particular navigation node, the node’s name can be used as an implicit role
name. For example, the anchors Login, Register, Logout and User are implicitly
related to the links from MainMenu to the respective process or navigation classes.

UWE Metamodel and Profile – User Guide and Reference

34

presentation presentationpackage []

<<presentationPage>>
MusicLibrary

<<presentationGroup>>
 : MainRegion

<<presentationClass>>
default : Home

<<presentationClass>>
 : AlbumIndex

<<presentationClass>>
 : Login

<<presentationClass>>
 : Register

<<presentationClass>>
 : BuyAlbum

<<presentationClass>>
 : Album

<<presentationClass>>
 : User

<<presentationClass>>
 : Recharge

<<anchor>>
 : Login

<<anchor>>
 : Logout

<<anchor>>
 : Register

<<anchor>>
 : User

<<presentationClass>>
 : MainMenu

<<presentationClass>>
 : AlbumQuery

<<textInput>>
 : name

<<button>>
 : Search

<<textInput>>
 : creditCardNumber

<<textInput>>
 : controlNumber

<<textInput>>
 : validThrough

<<textInput>>
 : owner

<<textInput>>
 : amount

<<button>>
 : OK

<<form>>
 : RechargeForm

<<text>>
 : currentCredits

<<text>>
 : errorMessage

<<presentationClass>>
RechargeDataInput

<<presentationClass>>
 : SongIndex

<<presentationClass>>
 : Song

<<text>>
 : length

<<text>>
 : name

<<text>>
 : description

<<text>>
 : downloadLink

<<text>>
 : name

<<text>>
 : artistName

<<anchor>>
 : BuyAlbum

<<image>>
 : Cover

<<text>>
 : price

<<presentationClass>>
Album

<<presentationClass>>
User

<<presentationClass>>
 : UserAlbumIndex

<<anchoredCollection>>
 : Albums

<<anchor>>
 : Album<<anchor>>

 : Recharge

<<text>>
 : credits

<<text>>
 : name

<<text>>
 : errorMessage

<<textInput>>
 : userName

<<textInput>>
 : password

<<button>>
 : Login

<<presentationClass>>
Login

<<text>>
 : errorMessage

<<textInput>>
 : userName

<<textInput>>
 : password

<<button>>
 : Register

<<presentationClass>>
Register

<<presentationClass>>
RechargeConfirmationInput

<<text>>
 : creditCard.number

<<text>>
 : creditCard.owner

<<button>>
 : CANCEL

<<button>>
 : OK

<<text>>
 : amount

<<presentationClass>>
BuyAlbum

<<presentationGroup>>
 : BuyAlbumGroup

<<presentationClass>>
 : InsufficientCreditsMessage

<<presentationClass>>
 : BuyAlbumConfirmation

<<presentationClass>>
Recharge

<<presentationGroup>>
 : RechargeGroup

<<presentationClass>>
 : RechargeConfirmationInput

<<presentationClass>>
 : RechargeDataInput

<<presentationClass>>
InsufficientCreditsMessage

<<text>>
 : message

<<button>>
 : RECHARGE

<<button>>
 : CANCEL

<<presentationClass>>
BuyAlbumConfirmation

<<text>>
 : message

<<button>>
 : OK

<<button>>
 : CANCEL

<<presentationClass>>
AlbumIndex

<<anchoredCollection>>
 : Albums

<<anchor>>
 : Album

<<presentationClass>>
Home

<<text>>
 : Introduction

shown if a user is
logged in

shown if no user is
logged in

shown if the user
doesn't own the album

shown if user owns the
album

Forms are optional in
UWE. It's used in this
case only to
demonstrate the
notation.

Figure 17: Music Portal Presentation Model

UWE Metamodel and Profile - User Guide and Reference

35

References
[1] Nora Koch, Alexander Knapp, Gefei Zhang and Hubert Baumeister. UML-based Web

Engineering: An Approach based on Standards (book chapter). In Web Engineering: Modelling
and Implementing Web Applications. Gustavo Rossi, Oscar Pastor, Daniel Schwabe and Luis
Olsina (Eds.), Springer, HCI, November 2007.

[2] Nora Koch and Andreas Kraus. Towards a Common Metamodel for the Development of Web
Applications. In Juan Manuel Cueva Lovelle, Bernardo Martín González Rodríguez, Luis Joyanes
Aguilar, José Emilio Labra Gayo, and María del Puerto Paule Ruíz, editors, Proc. 3rd Int. Conf.
Web Engineering (ICWE 2003), volume 2722 of LNCS, pages 497-506. Springer Verlag, 2003.

[3] Andreas Kraus and Nora Koch. A Metamodel for UWE. Technical Report 0301, Ludwig-
Maximilians-Universität München, 20 pages, January 2003.

